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Signals 
• Definition [The American Heritage Dictionary of the English Language] 

 
 
 

• Examples 
▫ voltages or currents in circuits 
▫ speech, images, videos 

 
• Mathematical Representation 

▫ Function of one or more independent variables 
𝑥𝑥: 𝐼𝐼 → 𝑋𝑋 

                                                𝑡𝑡 ↦ 𝑥𝑥(𝑡𝑡) 
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Examples of Signals 
 • Electrical voltage 

▫ 𝑉𝑉0:ℝ → ℝ 
          𝑡𝑡 ↦ 𝑉𝑉0(𝑡𝑡) 
 
 
 

• Daily temperature 
▫ 𝑇𝑇: 𝐼𝐼 → ℝ 
        𝑛𝑛 ↦ 𝑇𝑇[𝑛𝑛] 
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Examples of Signals 
 • Speech signal 

▫ 𝑥𝑥:ℝ → ℝ 
         𝑡𝑡 ↦ 𝑥𝑥(𝑡𝑡) 
 
 
 

• Color image 
▫ 𝑃𝑃: 𝐼𝐼 × 𝐽𝐽 → 𝑅𝑅 × 𝐺𝐺 × 𝐵𝐵 
        (𝑖𝑖, 𝑗𝑗) ↦ (𝑟𝑟 𝑖𝑖, 𝑗𝑗 ,𝑔𝑔 𝑖𝑖, 𝑗𝑗 , 𝑏𝑏[𝑖𝑖, 𝑗𝑗]) 
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• Continuous-time signal (Analog signal) 

5 
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• Discrete-time signals sampled from continuous-
time signals 
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• Digital signals from continuous-time signals 
(Analog signal) 
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• Digital signals from continuous-time signals 
(Analog signal) 



• The world is analog, the computer is digital 
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• Independent variables can be 
▫ continuous, e.g.,  

 voltage/current 
 vehicle speed 

▫ discrete, e.g.,  
 DNA base sequence 
 weekly average for stock markets 

▫ 1-D, 2-D, ••• n-D, e.g., 
 2-D/3-D Digital image pixels 
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Classification of Signals 
• Deterministic signals vs. Random signals 
• Continuous signals vs. Discrete signals 
• Energy signals vs. Power signals 
• Periodic signals vs. Non-periodic signals 
• Odd signals vs. Even signals 
• Real signals vs. Complex signals 
• …… 
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Deterministic vs. Random Signals 
• Deterministic signals 

▫ can be described by exact 
mathematical expression  

▫ given 𝑡𝑡 and get 
deterministic result  

 
• Random signals 

▫ can not be described by 
exact mathematic 
expression 

▫ given 𝑡𝑡 and get random 
result  
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Continuous-time vs. Discrete-time Signals 

• Continuous-time (CT) signals  
▫ Independent variable t  is continuous 
▫ The signal is defined for a continuum of values of the 

independent variable t 
▫ Notation: parentheses for continuous time, e.g., (𝑡𝑡)  

example: 𝑥𝑥 𝑡𝑡 = 2𝑒𝑒−𝑡𝑡 
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Continuous-time vs. Discrete-time Signals 

• Discrete-time (DT) signals/Sequences: 𝒙𝒙[𝒏𝒏] 
▫ Independent variable 𝑛𝑛 takes on only a discrete set of values, 

(in this course, a set of integer values only) 
▫ Signal is defined only at discrete times 
▫ Notation: square brackets for discrete time, e.g., [𝑛𝑛] 

 
 

example: 𝑥𝑥 𝑛𝑛 = �

 2,𝑛𝑛 = −1
4,𝑛𝑛 =  0  
2,𝑛𝑛 =  1  
0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
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Power and Energy Signals 

• Power and energy in a physical system 
▫ Instantaneous power 

𝑃𝑃 𝑡𝑡 = 𝑣𝑣 𝑡𝑡 𝒊𝒊 𝑡𝑡 =
1
𝑅𝑅
𝑣𝑣(𝑡𝑡) 2 

 
▫ Total energy over time interval [𝑡𝑡1, 𝑡𝑡2] 

1
𝑡𝑡2 − 𝑡𝑡1

� 𝑝𝑝 𝑡𝑡 𝑑𝑑𝑑𝑑
𝑡𝑡2

𝑡𝑡1
=

1
𝑡𝑡2 − 𝑡𝑡1

1
𝑅𝑅
� 𝑣𝑣(𝑡𝑡) 2𝑑𝑑𝑡𝑡
𝑡𝑡2

𝑡𝑡1
 

 
▫ Average power over  time interval 𝑡𝑡1, 𝑡𝑡2  

∫ 𝑝𝑝 𝑡𝑡 𝑑𝑑𝑑𝑑 = 𝑡𝑡2
𝑡𝑡1

 1
𝑅𝑅 ∫ 𝑣𝑣(𝑡𝑡) 2𝑑𝑑𝑑𝑑𝑡𝑡2

𝑡𝑡1
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Power and Energy Signals 

• Power and energy in this course 
▫ Total Energy 

        𝐸𝐸 = ∫ 𝑥𝑥 𝑡𝑡 2d𝑡𝑡𝑡𝑡2
𝑡𝑡1

,             𝐸𝐸 =  � 𝑥𝑥 𝑛𝑛 2𝑛𝑛2
𝑛𝑛=𝑛𝑛1

 

 
▫ Average Power 

   𝑃𝑃 = 1
𝑡𝑡2−𝑡𝑡1

∫ 𝑥𝑥(𝑡𝑡) 2𝑑𝑑𝑑𝑑𝑡𝑡2
𝑡𝑡1

,    𝑃𝑃 =  1
𝑛𝑛2−𝑛𝑛1+1

 � 𝑥𝑥 𝑛𝑛 2𝑛𝑛2
𝑛𝑛=𝑛𝑛1
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Power and Energy Signals 

• Power and energy definitions over infinite interval 
▫ Total Energy 

        𝐸𝐸∞ = lim
𝑇𝑇→∞

∫ 𝑥𝑥(𝑡𝑡) 2𝑑𝑑𝑑𝑑𝑇𝑇
−𝑇𝑇         𝐸𝐸∞ = lim

𝑁𝑁→∞
∑ 𝑥𝑥 𝑛𝑛 2𝑁𝑁
𝑛𝑛=−𝑁𝑁  

 
▫ Average Power 

         𝑃𝑃∞ = 1
2𝑇𝑇

lim
𝑇𝑇→∞

∫ 𝑥𝑥(𝑡𝑡) 2𝑑𝑑𝑑𝑑𝑇𝑇
−𝑇𝑇     𝑃𝑃∞ = lim

𝑁𝑁→∞
1

2𝑁𝑁+1
∑ 𝑥𝑥 𝑛𝑛 2𝑁𝑁
𝑛𝑛=−𝑁𝑁  
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Finite-energy and Finite-power Signals 

▫ Finite-Energy Signal 
       
        𝐸𝐸∞ < ∞          𝑃𝑃∞ = 0 
 
 

▫ Finite-Average Power Signal 
 

         𝑃𝑃∞ < ∞           𝐸𝐸∞ = ∞ 
 

example: 

example:        𝑥𝑥 𝑛𝑛 =4 
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c 

𝑥𝑥(t) 

𝑡𝑡 1 

1 



Periodic vs. Non-periodic Signals 
• Definition for continuous-time signals 

▫ If 𝑥𝑥 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 + 𝑇𝑇  for all values of 𝑡𝑡, then 𝑥𝑥 𝑡𝑡  is periodic, 
and 𝑥𝑥 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 + 𝑚𝑚𝑚𝑚  for all 𝑡𝑡 and any integer 𝑚𝑚.  
 

▫ Fundamental period ≜ the smallest positive value that 
satisfies 𝑥𝑥 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 + 𝑇𝑇  for all 𝑡𝑡 

 
Question: if the signal is constant, what is 

the fundamental period ? 
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Periodic vs. Non-periodic Signals 
• Definition for discrete-time signals 

▫ If 𝑥𝑥[𝑛𝑛]=𝑥𝑥[𝑛𝑛+𝑁𝑁] for all values of 𝑛𝑛, then 𝑥𝑥[𝑛𝑛] is periodic, and 
𝑥𝑥[𝑛𝑛]=𝑥𝑥[𝑛𝑛+𝑚𝑚𝑁𝑁] for all 𝑛𝑛 and any integer 𝑚𝑚  
 

▫ Fundamental Period ≜ the smallest positive integer          
that satisfies 𝑥𝑥[𝑛𝑛]=𝑥𝑥[𝑛𝑛+𝑁𝑁] for all 𝑛𝑛 

 

20 

Question: if the signal is constant, what is 
the fundamental period ? 



Even vs. Odd Signals 
• Definition 

▫ 𝑥𝑥(𝑡𝑡) or 𝑥𝑥[𝑛𝑛] is even if it is identical to its time-reversed 
counterpart 
 
 
 

▫ Similarly, 𝑥𝑥(𝑡𝑡) or 𝑥𝑥[𝑛𝑛] is odd if 
 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥(−𝑡𝑡) 𝑥𝑥[𝑛𝑛] = 𝑥𝑥[−𝑛𝑛] 

𝑥𝑥(𝑡𝑡) = −𝑥𝑥(−𝑡𝑡) 𝑥𝑥[𝑛𝑛] = −𝑥𝑥[−𝑛𝑛] 

Question: for odd signal 𝒙𝒙(𝒕𝒕), can we determine 𝒙𝒙(𝟎𝟎)? 
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Even vs. Odd Signals 
• Even-odd decomposition of a signal 

 
𝑥𝑥(𝑡𝑡) = 𝐸𝐸𝑣𝑣{𝑥𝑥(𝑡𝑡)} + 𝑂𝑂𝑑𝑑{𝑥𝑥(𝑡𝑡)} 

Even part Odd part 

𝐸𝐸𝑉𝑉{𝑥𝑥(𝑡𝑡)} =
1
2 [𝑥𝑥(𝑡𝑡) + 𝑥𝑥(−𝑡𝑡)] 𝑂𝑂𝑑𝑑{𝑥𝑥(𝑡𝑡)} =

1
2 [𝑥𝑥(𝑡𝑡) − 𝑥𝑥(−𝑡𝑡)] 
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Time Shift 

• Examples: radar, sonar, radio propagations 
• Notes: each point in 𝑥𝑥(𝑡𝑡)/𝑥𝑥[𝑛𝑛] occurs at a later/early time in 
𝑥𝑥(𝑡𝑡 − 𝑡𝑡0)/𝑥𝑥[𝑛𝑛 − 𝑛𝑛0], when 𝑡𝑡0/𝑛𝑛0 is positive/negative, i.e., 
• 𝑥𝑥(𝑡𝑡 − 𝑡𝑡0)/𝑥𝑥[𝑛𝑛 − 𝑛𝑛0] is the delayed version of 𝑥𝑥(𝑡𝑡)/𝑥𝑥[𝑛𝑛], for 𝑡𝑡0/𝑛𝑛0 

> 0 
• 𝑥𝑥(𝑡𝑡 − 𝑡𝑡0)/𝑥𝑥[𝑛𝑛 − 𝑛𝑛0] is the advanced version of 𝑥𝑥(𝑡𝑡)/𝑥𝑥[𝑛𝑛], 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡0/𝑛𝑛0 

< 0 
 

 

𝑥𝑥 𝑡𝑡 → 𝑥𝑥(𝑡𝑡 − 𝑏𝑏) 𝑥𝑥 𝑛𝑛 → 𝑥𝑥[𝑛𝑛 − 𝑏𝑏] 

23 



Time Reversal 
• CT signal:   𝑥𝑥(𝑡𝑡) → 𝑥𝑥(−𝑡𝑡) 

 
 
 
 
 
 
 

• DT signal：𝑥𝑥 𝑛𝑛 → 𝑥𝑥 −𝑛𝑛  
 

• Example: tape recording played backward 
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Time Scaling 
• Time Scaling：𝑥𝑥(𝑡𝑡) → 𝑥𝑥(𝛼𝛼𝛼𝛼),   𝑥𝑥[𝑛𝑛] → 𝑥𝑥[𝛼𝛼𝛼𝛼] 

 
 
 
 
 

• Example: audio played back at different speed 
▫ fast forward           𝛼𝛼 > 1  
▫ slow forward         0 < 𝛼𝛼 < 1 
▫ slow backward  −1 < 𝛼𝛼 < 0 
▫ fast backward       𝛼𝛼 < −1 

 
 
 
 

Notes：  𝛼𝛼 > 1, Compression   
𝛼𝛼 < 1, Extension  
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• Affine Transformation  
 𝑥𝑥(𝑡𝑡) → 𝑥𝑥(𝛼𝛼𝛼𝛼 + 𝛽𝛽),                          𝑥𝑥[𝑛𝑛] → 𝑥𝑥[𝛼𝛼𝛼𝛼 + 𝛽𝛽] 
 

• Examples: 
           𝑥𝑥(𝑡𝑡) → 𝑥𝑥(−3𝑡𝑡 − 2) 

 
 

• Can be decomposed as product of time shift, reversal and 
scaling, with the general rule: 
▫ Time shift first 
▫ Then time reversal and time scaling 

 
 

 
 

General Affine Transformation 

26 

𝑥𝑥(𝑡𝑡) 

𝑡𝑡 1 -2 −1 0 



x(-3(t+2/3)) 
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𝑡𝑡 1 -2 −1 0 

𝑥𝑥(𝑡𝑡) 

𝑥𝑥(𝑡𝑡 − 2) 𝑥𝑥(3𝑡𝑡 − 2) 

𝑥𝑥(−3𝑡𝑡 − 2) 

𝑡𝑡 

𝑡𝑡 𝑡𝑡     1          2  3 1 2/3 

−1  

• Examples: 𝑥𝑥 𝑡𝑡 → 𝑥𝑥 −3𝑡𝑡 − 2  
Question: what 
would happen if 
we shift after 
scaling/reflection? 



• Examples:  
    𝑥𝑥 𝑡𝑡 → 𝑥𝑥 2𝑡𝑡 , 𝑥𝑥(𝑡𝑡

2
)                      𝑥𝑥 𝑛𝑛 → 𝑥𝑥[2𝑛𝑛] 

28 



CT Complex Exponential Signals 
𝑥𝑥 𝑡𝑡 = 𝐶𝐶 · 𝑒𝑒𝑎𝑎𝑡𝑡, where 𝐶𝐶 ∈ ℂ, 𝑎𝑎 ∈ ℂ  

 
• Real exponential signals: 𝐶𝐶 ∈ ℝ, 𝒂𝒂 ∈ ℝ 

▫ 𝑎𝑎 > 0: growing exponential 
▫ 𝑎𝑎 < 0: decaying exponential 
▫ 𝑎𝑎 = 0: constant 
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CT Complex Exponential Signals 
𝑥𝑥 𝑡𝑡 = 𝐶𝐶 · 𝑒𝑒𝑎𝑎𝑡𝑡, where 𝐶𝐶 ∈ ℂ, 𝑎𝑎 ∈ ℝ 

 
▫ 𝑎𝑎 > 0: diverges from 𝑡𝑡 axis, 𝑥𝑥 𝑡𝑡 ↗ ∞ as 𝑡𝑡 → ∞ 
▫ 𝑎𝑎 < 0: converges to 𝑡𝑡 axis, 𝑥𝑥 𝑡𝑡 ↘ ∞ as 𝑡𝑡 → ∞ 
▫ 𝑎𝑎 = 0: constant 
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Periodic Complex Exponential Signals 
▫ Euler’s Relation: 
𝑥𝑥 𝑡𝑡 = 𝑒𝑒𝑗𝑗𝜔𝜔0𝑡𝑡=cos(𝜔𝜔0 𝑡𝑡) + 𝑗𝑗 sin(𝜔𝜔0 𝑡𝑡), where  𝜔𝜔0 ∈ ℂ 
 
 
 
 
 
 
 

▫ (Angular) frequency: 𝜔𝜔0 radians/s 
▫ Frequency: 𝑓𝑓0 = 𝜔𝜔0/(2𝜋𝜋) cycles/s (Hz) 
▫ Fundamental period: 𝑇𝑇0 = 2𝜋𝜋/|𝜔𝜔0| = 1/|𝑓𝑓0| s (only if 𝜔𝜔0 ≠ 0) 
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Periodic Complex Exponential Signals 
𝑥𝑥 𝑡𝑡 = 𝑒𝑒𝑗𝑗𝜔𝜔0𝑡𝑡=cos( |𝜔𝜔0| 𝑡𝑡) − 𝑗𝑗 sin(|𝜔𝜔0| 𝑡𝑡), where  𝜔𝜔0 < 0 

 
 
 
 
 
 
 
 
 

▫ Fundamental frequency: |𝜔𝜔0|, |𝑓𝑓0| 
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Periodic Complex Exponential Signals 
𝑥𝑥 𝑡𝑡 = 𝐶𝐶𝑒𝑒𝑗𝑗𝜔𝜔0𝑡𝑡=|C|[cos(𝜔𝜔0 𝑡𝑡 + 𝜙𝜙) + 𝑗𝑗 sin(𝜔𝜔0 𝑡𝑡 + 𝜙𝜙)], 𝐶𝐶 = 𝐶𝐶𝑒𝑒𝑗𝑗𝜙𝜙 
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CT Complex Sinusoidal Signals 
𝑥𝑥 𝑡𝑡 = 𝐴𝐴 cos(𝜔𝜔0 𝑡𝑡 + 𝜙𝜙), where 𝐴𝐴 ∈ ℝ 

 
▫ Conversion between exponentials and sinusoids 

𝐴𝐴𝑒𝑒𝑗𝑗(𝜔𝜔0𝑡𝑡+𝜙𝜙) = 𝐴𝐴 cos(𝜔𝜔0 𝑡𝑡 + 𝜙𝜙)+ 𝑗𝑗𝑗𝑗sin (𝜔𝜔0 𝑡𝑡 + 𝜙𝜙) 
 

𝐴𝐴 cos(𝜔𝜔0 𝑡𝑡 + 𝜙𝜙) =
A
2 𝑒𝑒

𝑗𝑗𝜙𝜙𝑒𝑒𝑗𝑗𝜔𝜔0𝑡𝑡 +
A
2 𝑒𝑒

−𝑗𝑗𝑗𝑗𝑒𝑒−𝑗𝑗𝜔𝜔0𝑡𝑡 = 𝐴𝐴 ⋅ ℛℯ{𝑒𝑒𝑗𝑗(𝜔𝜔0𝑡𝑡+𝜙𝜙)} 
𝐴𝐴sin (𝜔𝜔0 𝑡𝑡 + 𝜙𝜙) = 𝐴𝐴 ⋅ ℐ𝓂𝓂{𝑒𝑒𝑗𝑗(𝜔𝜔0𝑡𝑡+𝜙𝜙)} 

 
▫ Same periodicity 
 always periodic with fundamental frequency |𝜔𝜔0| 
 larger |𝜔𝜔0|, faster oscillation 
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General Complex Exponential Signals 
𝑥𝑥 𝑡𝑡 = 𝐶𝐶 · 𝑒𝑒𝑎𝑎𝑎𝑎, where 𝐶𝐶 = 𝐶𝐶 𝑒𝑒𝑗𝑗𝜙𝜙, 𝑎𝑎 = 𝑟𝑟 + 𝑗𝑗𝜔𝜔0 

 

⇓ 
 

𝑥𝑥 𝑡𝑡 = 𝐶𝐶 𝑒𝑒𝑟𝑟𝑡𝑡𝑒𝑒𝑗𝑗 𝜔𝜔0𝑡𝑡+𝜙𝜙 = |C|𝑒𝑒𝑟𝑟𝑟𝑟cos(𝜔𝜔0 𝑡𝑡 + 𝜙𝜙) + 𝑗𝑗|𝐶𝐶|𝑒𝑒𝑟𝑟𝑟𝑟 sin(𝜔𝜔0 𝑡𝑡 + 𝜙𝜙) 
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DT Complex Exponential Signals 
𝑥𝑥 𝑛𝑛 = 𝐶𝐶 · 𝛼𝛼𝑛𝑛 = 𝐶𝐶𝑒𝑒𝛽𝛽𝛽𝛽, where 𝐶𝐶 ∈ ℂ, 𝛼𝛼 = 𝑒𝑒𝛽𝛽 ∈ ℂ  

 
• Real exponential signals: 𝐶𝐶 ∈ ℝ, 𝒂𝒂 ∈ ℝ (but 𝛽𝛽 ∈ ℂ !) 

▫ 1. 𝛼𝛼 > 1: monotonically growing 
▫ 2. 0 < 𝛼𝛼 < 1: monotonically decaying 
▫ 3. 𝛼𝛼 = 0: constant 
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DT Complex Exponential Signals 
𝑥𝑥 𝑛𝑛 = 𝐶𝐶 · 𝛼𝛼𝑛𝑛 = 𝐶𝐶𝑒𝑒𝛽𝛽𝛽𝛽, where 𝐶𝐶 ∈ ℂ, 𝛼𝛼 = 𝑒𝑒𝛽𝛽 ∈ ℂ  

 
• Real exponential signals: 𝐶𝐶 ∈ ℝ, 𝑎𝑎 ∈ ℝ (but 𝛽𝛽 ∈ ℂ !) 

▫ 4. 𝛼𝛼 < −1: growing magnitude, alternating sign 
▫ 5. −1 < 𝛼𝛼 < 0: decaying magnitude, alternating sign 
▫ 6. 𝛼𝛼 = −1: constant magnitude, alternating sign (𝛽𝛽 = 𝑗𝑗𝑗𝑗 ) 
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General Complex Exponential Signals 
𝑥𝑥 𝑛𝑛 = 𝐶𝐶 · 𝛼𝛼𝑛𝑛, where 𝐶𝐶 = 𝐶𝐶 𝑒𝑒𝑗𝑗𝜙𝜙, 𝛼𝛼 = 𝛼𝛼 𝑒𝑒𝑗𝑗𝜔𝜔0  

 

⇓ 
 

𝑥𝑥 𝑛𝑛 = 𝐶𝐶 𝛼𝛼𝑛𝑛𝑒𝑒𝑗𝑗 𝜔𝜔0𝑛𝑛+𝜙𝜙 = |C||𝛼𝛼|𝑛𝑛cos(𝜔𝜔0 𝑛𝑛 + 𝜙𝜙) + 𝑗𝑗|𝐶𝐶||𝛼𝛼|𝑛𝑛 sin(𝜔𝜔0 𝑛𝑛 + 𝜙𝜙) 
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DT Complex Sinusoidal Signals 
𝑥𝑥 𝑛𝑛 = 𝐶𝐶 𝑒𝑒𝑗𝑗 𝜔𝜔0𝑛𝑛+𝜙𝜙 = |𝐶𝐶| cos (𝜔𝜔0 𝑛𝑛 + 𝜙𝜙) + 𝑗𝑗|𝐶𝐶| sin(𝜔𝜔0 𝑛𝑛 + 𝜙𝜙) 

 
▫ Periodicity 
 periodic ⇔ 𝜔𝜔0 = 2𝜋𝜋𝜋

𝑁𝑁
 for 𝑘𝑘 ∈ ℤ, 𝑁𝑁 ∈ ℤ+ 

 fundamental period  𝑁𝑁0 = 𝑁𝑁/gcd (𝑁𝑁, 𝑘𝑘) 
 

▫ Fundamental frequency 
 zero if 𝑁𝑁0 = 1 
 2𝜋𝜋/𝑁𝑁0 if 𝑁𝑁0 > 1 

 
▫ Example: 𝑥𝑥 𝑛𝑛 = 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑗 has 𝑁𝑁0 = 2, fundamental frequency 𝜋𝜋, 

not 3𝜋𝜋! Note that 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗. 
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• Aliasing 
▫ 𝑒𝑒𝑗𝑗𝜔𝜔1𝑡𝑡 = 𝑒𝑒𝑗𝑗𝜔𝜔2𝑡𝑡 ,∀𝑡𝑡 ∈ ℝ ⇔ 𝜔𝜔1 = 𝜔𝜔2 
▫ 𝑒𝑒𝑗𝑗𝜔𝜔1𝑛𝑛 = 𝑒𝑒𝑗𝑗𝜔𝜔2𝑛𝑛,∀𝑛𝑛 ∈ ℕ ⇔ 𝜔𝜔1 = 𝜔𝜔2 + 2𝑘𝑘𝑘𝑘, 𝑘𝑘 ∈ ℤ 

 
 

• Example: 𝜔𝜔1 = 1, 𝜔𝜔2 = 1 + 2𝜋𝜋 
 
 
 
 

 
For DT signals, it suffices to consider frequencies on an 
interval of length 2𝜋𝜋, e.g., [0, 2𝜋𝜋) or (−𝜋𝜋,𝜋𝜋]  

DT Complex Exponential Signals 

40 

Frequencies differing by 2k𝜋𝜋 yields the same discrete sinusoid 



High frequencies around (2𝑘𝑘 + 1)𝜋𝜋, low frequencies around 2𝑘𝑘𝑘𝑘 

DT Complex Exponential Signals 
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Comparison on Periodic Properties of CT and DT 
Complex Exponentials and Sinusoids  
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 𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑗𝑗𝝎𝝎𝟎𝟎𝒕𝒕  𝑥𝑥[𝑛𝑛] = 𝑒𝑒𝑗𝑗𝜔𝜔0𝑛𝑛  

Distinct signals for distinct value 
of 𝜔𝜔0 

Identical signals for values of 𝜔𝜔0        
separated by multiples of 2𝜋𝜋 

Periodic for any choice of 𝜔𝜔0 Periodic only if  𝜔𝜔0 = 2𝜋𝜋𝜋𝜋/𝑁𝑁                         
for some integers 𝑁𝑁 > 0 and 𝑚𝑚           

Fundamental angular frequency 
𝜔𝜔0 

Fundamental angular frequency 
𝜔𝜔0/𝑛𝑛, if 𝑚𝑚 and 𝑁𝑁 do not have 
any factors in common  

Fundamental period 2𝜋𝜋/𝜔𝜔0 Fundamental period 2𝜋𝜋𝜋𝜋/𝜔𝜔0 



DT Unit Impulse and Unit Step Sequences 

•  Unit Impulse Sequence 

▫ 𝛿𝛿[𝑛𝑛] = � 1,  𝑛𝑛 = 0
 0,  𝑛𝑛 ≠ 0 

 
 
 
• Unit Step Sequence 

▫ 𝑢𝑢[𝑛𝑛] = � 0, 𝑛𝑛 < 0
 1, 𝑛𝑛 ≥ 0 
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•  Relationship 
▫ 𝛿𝛿[𝑛𝑛] = 𝑢𝑢[𝑛𝑛] − 𝑢𝑢[𝑛𝑛 − 1]  first (backward) difference 
▫ 𝑢𝑢[𝑛𝑛] = ∑ 𝛿𝛿[𝑚𝑚]𝑛𝑛

𝑚𝑚=−∞ = ∑ 𝛿𝛿[𝑛𝑛 − 𝑘𝑘]∞
𝑘𝑘=0   running sum 

 
• Sampling  Property 

▫ 𝑥𝑥[𝑛𝑛] ⋅ 𝛿𝛿[𝑛𝑛] = 𝑥𝑥[0] ⋅ 𝛿𝛿[𝑛𝑛] 
▫ 𝑥𝑥[𝑛𝑛] ⋅ 𝛿𝛿[𝑛𝑛 − 𝑘𝑘] = 𝑥𝑥[𝑘𝑘] ⋅ 𝛿𝛿[𝑛𝑛 − 𝑘𝑘] 
 
 
 

 
• Signal representation by means of a series of 

delayed unit samples 
▫ 𝑥𝑥[𝑛𝑛] = ∑ 𝑥𝑥[𝑘𝑘] ⋅ 𝛿𝛿[𝑛𝑛 − 𝑘𝑘]∞

𝑘𝑘=−∞  
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CT Unit Step Function 
• Also called Heaviside (step) function 

𝑢𝑢(𝑡𝑡) = � 0, 𝑡𝑡 < 0
 1, 𝑡𝑡 > 0 

 
▫ undefined at 𝑡𝑡 = 0 
▫ sometimes 𝑢𝑢 0 = 0, 1, 𝑜𝑜𝑜𝑜 1/2 
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• Recall that for DT unit step/impulse signals  
 

▫ 𝛿𝛿[𝑛𝑛] = 𝑢𝑢[𝑛𝑛] − 𝑢𝑢[𝑛𝑛 − 1]                                      —1st difference 
▫ 𝑢𝑢 𝑛𝑛 = ∑ 𝛿𝛿 𝑚𝑚𝑛𝑛

𝑚𝑚=−∞ = ∑ 𝛿𝛿[𝑛𝑛 − 𝑘𝑘]∞
𝑘𝑘=0             —running sum 

 
 

• Does it exist in CT domain a 𝛿𝛿(𝑡𝑡) satisfying the 
following relationship? 

 

▫ 𝛿𝛿(𝑡𝑡) = 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

                                                      —1st derivative 
▫ 𝑢𝑢(𝑡𝑡) = ∫ 𝛿𝛿(𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡

−∞                                            —running sum 
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CT Unit Impulse Function 
• Define 𝑢𝑢∆(𝑡𝑡) 

▫ rises from 0 to 1 in a very short interval ∆ 
 

• 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝛿𝛿Δ 𝑡𝑡 = 𝑑𝑑 𝑢𝑢Δ 𝑡𝑡
𝑑𝑑𝑑𝑑

,  𝛿𝛿(𝑡𝑡) = lim
Δ→0

𝛿𝛿Δ (𝑡𝑡) 
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Notes:  the amplitude of the signal 𝛿𝛿(𝑡𝑡) at 𝑡𝑡 = 0 is infinite, but 
with a unit integral from −∞ to  +∞ , i.e., from 0− to 0+.        



•  Also called Dirac delta function 

� � 𝛿𝛿(𝑡𝑡)𝑑𝑑𝑑𝑑 = 1
∞

−∞
 𝛿𝛿(𝑡𝑡) = 0, 𝑡𝑡 ≠ 0

 

 
 
 
 
 

• Physical models 
▫ density of point mass/charge 
▫ impulse force 
 

)(tδ

t0 
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•  Relationship 
▫ 𝛿𝛿(𝑡𝑡) = 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑
 

▫ 𝑢𝑢(𝑡𝑡) = ∫ 𝛿𝛿(𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡
−∞  

 
• Sampling  Property 

▫ 𝑥𝑥 𝑡𝑡 · 𝛿𝛿 𝑡𝑡 = 𝑥𝑥 0 · 𝛿𝛿(𝑡𝑡) 
▫ 𝑥𝑥 𝑡𝑡 · 𝛿𝛿 𝑡𝑡 − 𝑡𝑡0 = 𝑥𝑥 𝑡𝑡0 · 𝛿𝛿(𝑡𝑡 − 𝑡𝑡0) 

 
• Scaling Property 

▫ 𝑑𝑑 𝑘𝑘𝑘𝑘(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘(𝑡𝑡) 

 
 
 
Question: can we represent 𝒙𝒙(𝒕𝒕) by using a series of 

unit samples as that for DT signal? 
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• Example:   
▫ Derive the 1st derivative of  the following 𝑥𝑥(𝑡𝑡) 
 a) 𝑥𝑥(𝑡𝑡) = 2𝑢𝑢(𝑡𝑡 − 1) − 3𝑢𝑢(𝑡𝑡 − 2) + 2𝑢𝑢(𝑡𝑡 − 4) 

 b) 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 2𝛿𝛿(𝑡𝑡 − 1) − 3𝛿𝛿(𝑡𝑡 − 2) + 2𝛿𝛿(𝑡𝑡 − 4) 
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• Example:  
▫ Calculate the following signals/values  
 a) (𝑡𝑡2 − 1)𝛿𝛿(𝑡𝑡 − 2) 
 b) ∫ (𝑡𝑡2 − 1)𝛿𝛿(𝑡𝑡 − 2)3

−3 𝑑𝑑𝑑𝑑 
 c) 𝑥𝑥[𝑛𝑛 − 3]𝛿𝛿[𝑛𝑛 + 1] 
 d) ∫ (𝜏𝜏2 − 1)𝛿𝛿(𝜏𝜏 − 2)𝑡𝑡

−3 𝑑𝑑𝑑𝑑 
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Systems 
• A system takes some input and produces some output 

 
 
 
 
 
 

• Example: balance of your bank account 
▫ Input 𝑥𝑥[𝑛𝑛]: net deposit on the 𝑛𝑛-th day 
▫ Output 𝑦𝑦[𝑛𝑛]: balance at the end of the 𝑛𝑛-th day 
▫ Input-output relation:  

𝑦𝑦[𝑛𝑛]  =  (1 + 𝑟𝑟)𝑦𝑦[𝑛𝑛 − 1]  + 𝑥𝑥[𝑛𝑛],       𝑟𝑟 interest rate 
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System Modeling 
• RLC Circuit 

    ∵𝑖𝑖 𝑡𝑡 = 𝑉𝑉𝑠𝑠 𝑡𝑡 −𝑉𝑉𝑐𝑐(𝑡𝑡)
𝑅𝑅

  𝑖𝑖 𝑡𝑡 = 𝐶𝐶·𝑑𝑑𝑉𝑉𝑐𝑐(𝑡𝑡)
𝑑𝑑𝑑𝑑

 

    ∴𝑉𝑉𝐶𝐶
𝒅𝒅𝑡𝑡

+ 1
𝑅𝑅𝑅𝑅
𝑉𝑉𝐶𝐶 𝑡𝑡 = 1

𝑅𝑅𝑅𝑅
𝑉𝑉𝑠𝑠(𝑡𝑡) 

 
 
• Mechanism System 
    ∵𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑
= 1
𝑚𝑚

[𝑓𝑓 𝑡𝑡 − 𝜌𝜌𝑣𝑣(𝑡𝑡)] 

    ∴ 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

+ 𝜌𝜌
𝑚𝑚
𝑣𝑣 𝑡𝑡 = 𝑓𝑓 𝑡𝑡

𝑚𝑚
 

－ 

＋ ＋ 

－ 

R 

C 

f
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𝑉𝑉𝑠𝑠 𝑡𝑡  𝑉𝑉𝑐𝑐 𝑡𝑡  



System Modeling 
• Observations 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑎𝑎(𝑡𝑡) = 𝑏𝑏𝑏𝑏(𝑡𝑡) 
 

𝑎𝑎𝑦𝑦 𝑛𝑛 − 1 + 𝑦𝑦 𝑛𝑛 = 𝑏𝑏𝑥𝑥[𝑛𝑛] 
 

▫ Constant coefficient differential/difference equations 
▫ Very different physical systems may  
 be modeled mathematically in very similar ways 
 have very similar mathematical descriptions 
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Typical Systems  
• Amplifier 

𝑦𝑦(𝑡𝑡) = 𝑐𝑐𝑐𝑐(𝑡𝑡)  
• Adder 

    𝑦𝑦(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡) + 𝑥𝑥2(𝑡𝑡) 
• Multiplier 

    𝑦𝑦(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡) ⋅ 𝑥𝑥2(𝑡𝑡) 
• Differentiator/Difference 

𝑦𝑦(𝑡𝑡) = 𝑑𝑑𝑑𝑑(𝑡𝑡)/𝑑𝑑𝑑𝑑,   𝑦𝑦[𝑛𝑛] = 𝑥𝑥[𝑛𝑛] − 𝑥𝑥[𝑛𝑛 − 1] 
• Integrator/Accumulator 
    …… 

 

55 



System Interconnections 
• Concept 

▫ Build a complex system from interconnected subsystems 
▫ Scope of subsystem depends on level of abstraction 

 
• Basic Types of Interconnections 
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Memory 
• Systems with memory  

▫ if the current output of the system is dependent on future and/or 
past values of the inputs and/or outputs, e.g., 

▫ Capacitor system: 

     𝑢𝑢 𝑡𝑡 = 1
𝐶𝐶 ∫ 𝑖𝑖 𝜏𝜏 𝑑𝑑𝜏𝜏𝑡𝑡

−∞ ,  𝑦𝑦(𝑡𝑡) = 1
𝐶𝐶 ∫ 𝑥𝑥 𝜏𝜏 𝑑𝑑𝜏𝜏𝑡𝑡

−∞  

▫ Accumulator system: 

           𝑦𝑦 𝑛𝑛 = ∑ 𝑥𝑥 𝑘𝑘𝑛𝑛
𝑘𝑘=−∞ ,   𝑦𝑦 𝑛𝑛 = � 𝑥𝑥 𝑘𝑘 + 𝑥𝑥 𝑛𝑛 = 𝑦𝑦 𝑛𝑛 − 1 + 𝑥𝑥[𝑛𝑛]𝑛𝑛−1

𝑘𝑘=−∞  
 

• Memoryless systems:  
▫ if the current output of the system is dependent on the input at 

the same time, e.g., 
▫ Identity system:  
                                         𝑦𝑦 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 ,𝑦𝑦[𝑛𝑛] = 𝑥𝑥[𝑛𝑛] 
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• Example:  
▫ Determine the memory property of the following systems: 
 a) amplifier, adder, multiplier; 
 b) integrator, accumulator;  
 c) differentiator; 
 d) time reversal, time scalar; 
 e) decimator, interpolator. 
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Invertibility 
• Inverse systems 

▫ distinct inputs lead to distinct outputs, e.g.,  

𝑦𝑦 𝑡𝑡 = 2𝑥𝑥 𝑡𝑡 → 𝑤𝑤(𝑡𝑡) =
1
2𝑦𝑦(𝑡𝑡) 

 
• Non-inverse systems 

▫ distinct inputs may lead to the same outputs, e.g.,  
𝑦𝑦 𝑡𝑡 = 𝑥𝑥2 𝑡𝑡 , 𝑦𝑦[𝑛𝑛] = 0 

 
• Importance of the concept 

▫ encoding for channel coding or lossless compress 
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Causality 
• A system is causal  

▫ if output at any time 𝑡𝑡 depends only on input values up to 𝑡𝑡 
▫ i.e., output does not anticipate future values of the input 

 

• Notes: 
▫ All real-time physical systems are causal 
 because time only moves forward, effect occurs after cause 
 e.g., imagine if you own a non-causal system whose output 

depends on tomorrow’s stock price. 
▫ Causality does not apply to spatially varying signals 
 one can move both left and right, up and down 

▫ Causality does not apply to recorded signals   
 e.g., taped sports games vs. live show. 
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Causality 
• For a causal system 𝑥𝑥(𝑡𝑡)  → 𝑦𝑦(𝑡𝑡)  
             𝑥𝑥1 𝑡𝑡 → 𝑦𝑦1 𝑡𝑡 ,     𝑥𝑥2(𝑡𝑡)  → 𝑦𝑦2(𝑡𝑡)  
 
               if         𝑥𝑥1 𝑡𝑡 =  𝑥𝑥2 𝑡𝑡 ,  ∀𝑡𝑡 ≤  𝑡𝑡0 
 
           then        𝑦𝑦1 𝑡𝑡 =  𝑦𝑦2 𝑡𝑡 ,  ∀𝑡𝑡 ≤  𝑡𝑡0 
 

▫ If two inputs to a causal system are identical up to some 
point in time 𝑡𝑡0, the corresponding outputs are also equal 
up to the same time 𝑡𝑡0 
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• Example:  
▫ Determine the causality of the following signals  
 𝑦𝑦 𝑡𝑡 = 𝑥𝑥2 𝑡𝑡 − 1  
 e.g., 𝑦𝑦 5  depends on 𝑥𝑥 4  … causal 

 
 𝑦𝑦 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 + 1  
 e.g., 𝑦𝑦 5 = 𝑥𝑥 6  depends on future … noncausal 

 
 𝑦𝑦 𝑛𝑛 = 𝑥𝑥 −𝑛𝑛  
 e.g., 𝑦𝑦 5 = 𝑥𝑥 −5 , but 𝑦𝑦 −5 = 𝑥𝑥[5] depends on 

future … noncausal 
 

 𝑦𝑦 𝑛𝑛 = 1
2

𝑛𝑛+1
𝑥𝑥3[𝑛𝑛 − 1] 

 e.g., 𝑦𝑦 5  depends on 𝑥𝑥 4  … causal 
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Linearity 
• A system 𝑥𝑥(𝑡𝑡)  → 𝑦𝑦(𝑡𝑡) is linear  

▫ if for any two input-output: 𝑥𝑥1(𝑡𝑡) → 𝑦𝑦1(𝑡𝑡) , 𝑥𝑥2(𝑡𝑡) → 𝑦𝑦2(𝑡𝑡) 
▫ the additivity and scaling properties hold 

  additivity:             𝑥𝑥1(𝑡𝑡)  +  𝑥𝑥2(𝑡𝑡)  →  𝑦𝑦1(𝑡𝑡)  +  𝑦𝑦2(𝑡𝑡) 
      scaling:                      𝑎𝑎𝑎𝑎1(𝑡𝑡) →  𝑎𝑎𝑎𝑎1(𝑡𝑡)  

• or equivalently, the superposition property holds 
         superposition:   𝑎𝑎𝑎𝑎1 𝑡𝑡 + 𝑏𝑏𝑏𝑏2 

𝑡𝑡 →  𝑎𝑎𝑎𝑎1(𝑡𝑡) +  𝑏𝑏𝑏𝑏2 
(𝑡𝑡) 

 
• Example: 

• 𝑦𝑦[𝑛𝑛]  =  𝑥𝑥2[𝑛𝑛]        nonlinear,  causal 
• 𝑦𝑦(𝑡𝑡)  =  𝑥𝑥(2𝑡𝑡)        linear, non-causal 
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Linearity 
• Many systems are nonlinear  

▫ Examples: many circuit elements (e.g., diodes), dynamics of 
aircraft, econometric models, … 

• But why we  study linear systems? 
▫ Linear models represent accurate representations of 

behavior of many systems 
 e.g., linear resistors, capacitors, other examples given 

previously 
▫ We can often linearize models to examine “small signal” 

perturbations around “operating points” 
▫ Linear systems are analytically tractable, providing basis 

for important tools and considerable insight 
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Time-invariance 
• A system is time-invariant  

▫ if its behavior does not depend on what time it is; 
▫ i.e., time shift in input results in identical time shift in output 
 

• Mathematical definition 
▫ For a DT system: A system 𝑥𝑥[𝑛𝑛]  →  𝑦𝑦[𝑛𝑛] is time-invariant if 

for any input x[n] and any time shift 𝑛𝑛0,     
          if                           𝑥𝑥[𝑛𝑛]  → 𝑦𝑦[𝑛𝑛] 
 then              𝑥𝑥[𝑛𝑛 − 𝑛𝑛0]  → 𝑦𝑦[𝑛𝑛 − 𝑛𝑛0] 
▫ Similarly for a CT time-invariant system,    
          if                           𝑥𝑥(𝑡𝑡)  → 𝑦𝑦(𝑡𝑡) 

 then                 𝑥𝑥 𝑡𝑡 – 𝑡𝑡0 → 𝑦𝑦(𝑡𝑡 – 𝑡𝑡0)  

 

65 



• Example： 
▫ Consider the time-invariance property of the following 

systems: 
 

 𝑦𝑦[𝑛𝑛] = 𝑛𝑛𝑥𝑥[𝑛𝑛]                  time-varying 
 
 𝑦𝑦(𝑡𝑡) = 𝑥𝑥2(𝑡𝑡 + 1)           time-invariant 
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• Example: 
▫ For a time-invariant system 𝑥𝑥(𝑡𝑡) → 𝑦𝑦(𝑡𝑡),  
 if input is periodic with 𝑇𝑇, 𝑥𝑥 𝑡𝑡 = 𝑥𝑥(𝑡𝑡 + 𝑇𝑇), then the 

output is also periodic with 𝑇𝑇, i.e., 
  𝑦𝑦 𝑡𝑡 = 𝑦𝑦(𝑡𝑡 +  𝑇𝑇) 

 
• Example: 

 𝑦𝑦(𝑡𝑡) = cos (𝑥𝑥(𝑡𝑡))        time-invariant 
 

• Example 
▫ amplitude modulator:  
 𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)cos𝜔𝜔𝑡𝑡                        time-varying 

 
 
 
 
 

67 



Stability 
 • A System is bounded-input bounded-output 

(BIBO) stable 
▫ if outputs are bounded for all bounded inputs 

 
• Example: 

▫ When  𝑥𝑥(𝑡𝑡) ≤ 𝐵𝐵,  determine whether or not the following 
systems are stable? 

▫ a) 𝑦𝑦 𝑡𝑡 = 𝑡𝑡 ⋅ 𝑥𝑥 𝑡𝑡 , unstable 
▫ b) 𝑦𝑦 𝑡𝑡 = 𝑒𝑒𝑥𝑥 𝑡𝑡 , stable 
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Linear Time-Invariant (LTI) Systems 
• Using superposition and time-invariant properties 

▫ if response of an LTI system to some inputs (“basic signals”) 
is known, we then actually know the response to many inputs 

▫ if                                   𝑥𝑥𝑘𝑘 𝑛𝑛  → 𝑦𝑦𝑘𝑘 [𝑛𝑛] 
    then                      ∑ 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 𝑛𝑛 → ∑ 𝑎𝑎𝑘𝑘𝑦𝑦𝑘𝑘[𝑛𝑛]𝑘𝑘𝑘𝑘  
 

• Characteristics of “basic signals” 
▫ can represent rich classes of signals as linear combinations of 

these building block signals 
▫ response of LTI Systems to these basic signals are both simple 

and insightful 
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Many Thanks  
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