

Institute of Media, Information, and Network

Signal Basics

Hongkai Xiong 熊红凯 <u>http://min.sjtu.edu.cn</u>

Department of Electronic Engineering Shanghai Jiao Tong University

Signals

• **Definition** [The American Heritage Dictionary of the English Language]

a. *Electronics* An impulse or fluctuating quantity, as of electrical voltage or light intensity, whose variations represent coded information.
b. *Computers* A sequence of digital values whose variations represent coded information.

Examples

- voltages or currents in circuits
- speech, images, videos

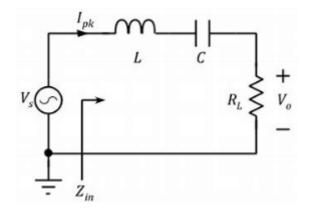
Mathematical Representation

Function of one or more independent variables

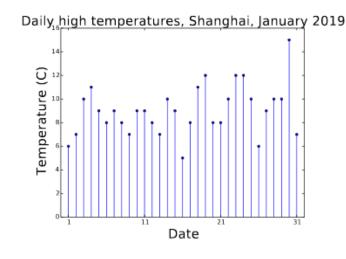
 $\begin{array}{c} x: I \to X \\ t \mapsto x(t) \end{array}$

Examples of Signals

- Electrical voltage
 - $V_0 \colon \mathbb{R} \to \mathbb{R}$ $t \mapsto V_0(t)$

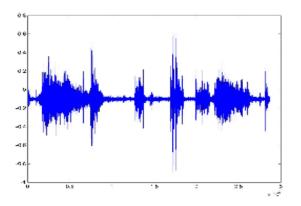


• Daily temperature • $T: I \rightarrow \mathbb{R}$ $n \mapsto T[n]$



Examples of Signals

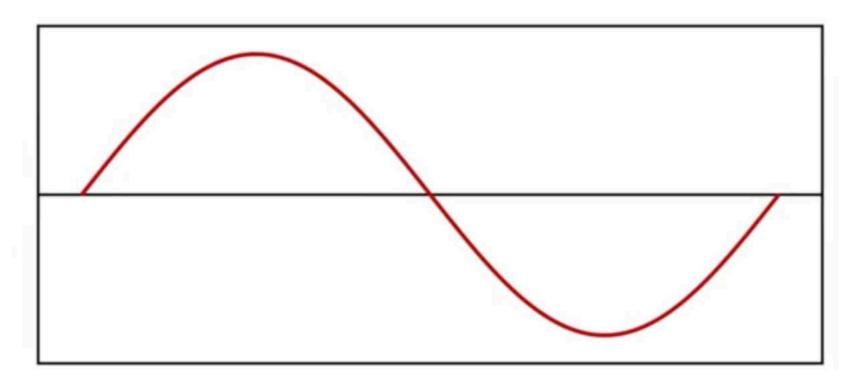
- Speech signal
 - $x: \mathbb{R} \to \mathbb{R}$ $t \mapsto x(t)$



Color image

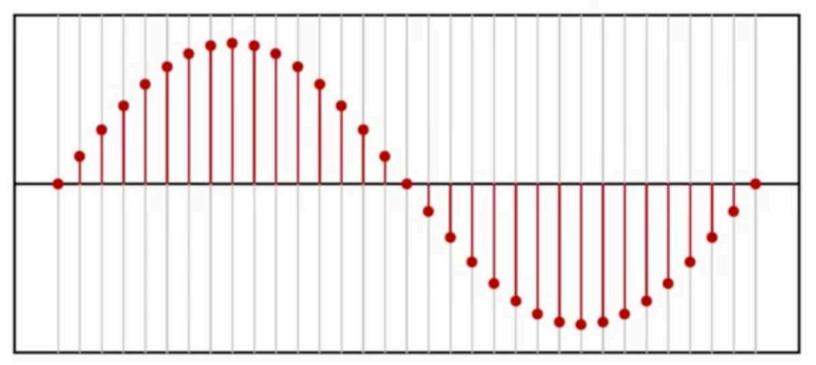
□ $P: I \times J \rightarrow R \times G \times B$ $(i,j) \mapsto (r[i,j],g[i,j],b[i,j])$

• **Continuous-time signal (Analog signal)**



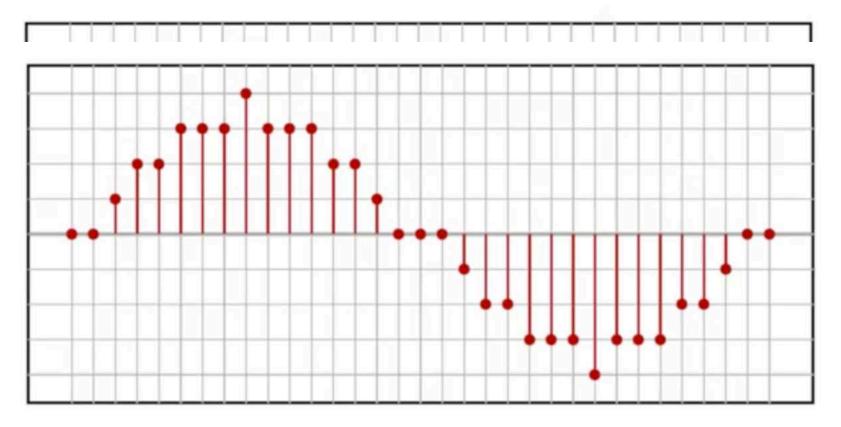
x(t)

• Discrete-time signals sampled from continuoustime signals



x[n]

• Digital signals from continuous-time signals (Analog signal)



 $\hat{x}[n]$

Digital signals from continuous-time signals (Analog signal)

Just one MicroSD card stores more than 25 years of storage the rest combined

• The world is analog, the computer is digital

• Independent variables can be

- continuous, e.g.,
 - voltage/current
 - vehicle speed
- discrete, e.g.,
 - DNA base sequence
 - weekly average for stock markets
- □ 1-D, 2-D, ••• *n*-D, e.g.,
 - 2-D/3-D Digital image pixels

.

Classification of Signals

Deterministic signals vs. Random signals

11

- Continuous signals vs. Discrete signals
- Energy signals vs. Power signals
- Periodic signals vs. Non-periodic signals
- Odd signals vs. Even signals
- Real signals vs. Complex signals

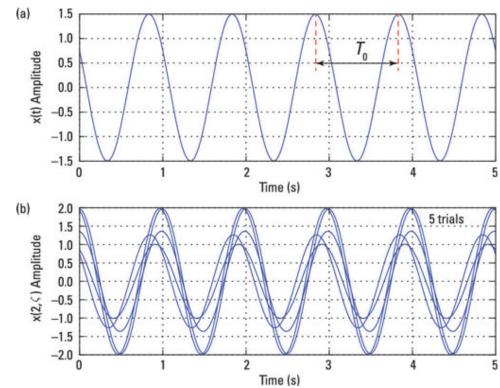
Deterministic vs. Random Signals

Deterministic signals

- can be described by exact mathematical expression
- given t and get deterministic result

Random signals

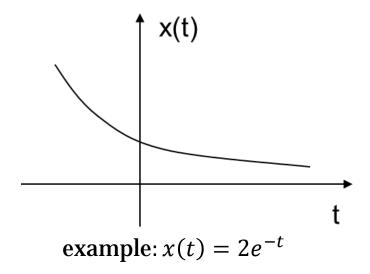
- can not be described by exact mathematic expression
- given t and get random result



Continuous-time vs. Discrete-time Signals

• Continuous-time (CT) signals

- Independent variable t is continuous
- The signal is defined for a continuum of values of the independent variable t
- Notation: parentheses for continuous time, e.g., (*t*)



Continuous-time vs. Discrete-time Signals

- **Discrete-time (DT) signals/Sequences:** *x*[*n*]
 - Independent variable n takes on only a discrete set of values, (in this course, a set of integer values only)
 - Signal is defined only at discrete times
 - Notation: square brackets for discrete time, e.g., [n]



Power and Energy Signals

- Power and energy in a physical system
 - Instantaneous power

$$P(t) = v(t)\mathbf{i}(t) = \frac{1}{R}|v(t)|^2$$

- Total energy over time interval $[t_1, t_2]$ $\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} p(t) dt = \frac{1}{t_2 - t_1} \frac{1}{R} \int_{t_1}^{t_2} |v(t)|^2 dt$
- Average power over time interval $[t_1, t_2]$ $\int_{t_1}^{t_2} p(t)dt = \frac{1}{R} \int_{t_1}^{t_2} |v(t)|^2 dt$

Power and Energy Signals

- Power and energy in this course
 - Total Energy

$$E = \int_{t_1}^{t_2} |x(t)|^2 dt, \qquad E = \sum_{n=n_1}^{n_2} |x[n]|^2$$

• Average Power

$$P = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} |x(t)|^2 dt, \quad P = \frac{1}{n_2 - n_1 + 1} \sum_{n=n_1}^{n_2} |x[n]|^2$$

Power and Energy Signals

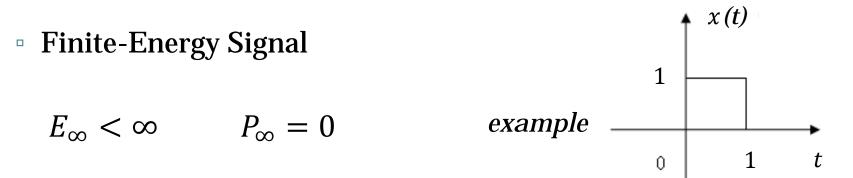
- Power and energy definitions over infinite interval
 - Total Energy

$$E_{\infty} = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt \qquad E_{\infty} = \lim_{N \to \infty} \sum_{n=-N}^{N} |x[n]|^2$$

• Average Power

$$P_{\infty} = \frac{1}{2T} \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt \quad P_{\infty} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

Finite-energy and Finite-power Signals



Finite-Average Power Signal

$$P_{\infty} < \infty$$
 $E_{\infty} = \infty$ example: $x[n]=4$

Periodic vs. Non-periodic Signals

- Definition for continuous-time signals
 - If x(t) = x(t + T) for all values of t, then x(t) is periodic, and x(t) = x(t + mT) for all t and any integer m.
 - Fundamental period \triangleq the smallest positive value that satisfies x(t) = x(t + T) for all t

Question: if the signal is constant, what is the fundamental period ?

Periodic vs. Non-periodic Signals

- Definition for discrete-time signals
 - If x[n]=x[n+N] for all values of n, then x[n] is periodic, and x[n]=x[n+mN] for all n and any integer m
 - Fundamental Period ≜ the smallest positive integer that satisfies x[n]=x[n+N] for all n

Question: if the signal is constant, what is the fundamental period ?

Even vs. Odd Signals

Definition

x(t) or x[n] is even if it is identical to its time-reversed counterpart

$$x(t) = x(-t) \qquad \qquad x[n] = x[-n]$$

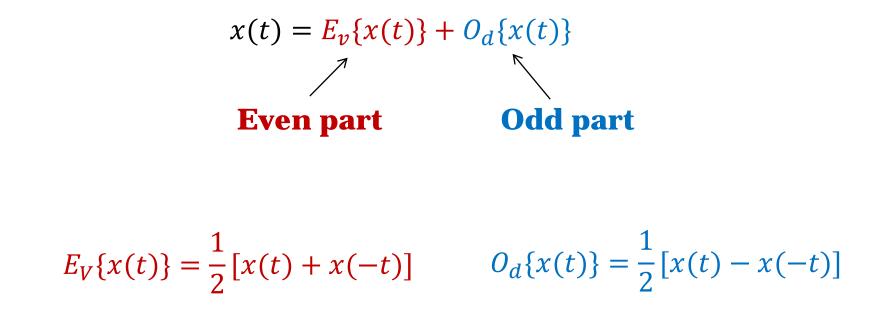
• Similarly, x(t) or x[n] is odd if

$$x(t) = -x(-t)$$
 $x[n] = -x[-n]$

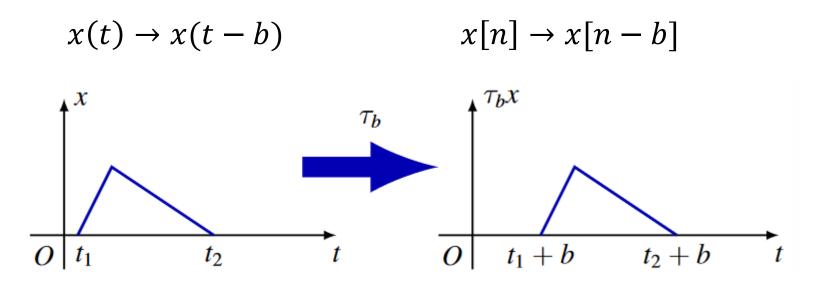
Question: for odd signal x(t), can we determine x(0)?

Even vs. Odd Signals

Even-odd decomposition of a signal



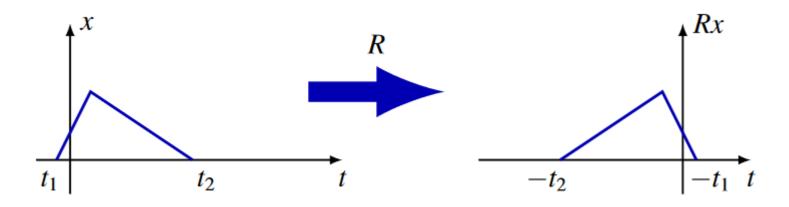
Time Shift



- Examples: radar, sonar, radio propagations
- Notes: each point in x(t)/x[n] occurs at a later/early time in $x(t t_0)/x[n n_0]$, when t_0/n_0 is positive/negative, i.e.,
 - $x(t t_0)/x[n n_0]$ is the delayed version of x(t)/x[n], for $t_0/n_0 > 0$
 - $x(t t_0)/x[n n_0]$ is the advanced version of x(t)/x[n], for $t_0/n_0 < 0$

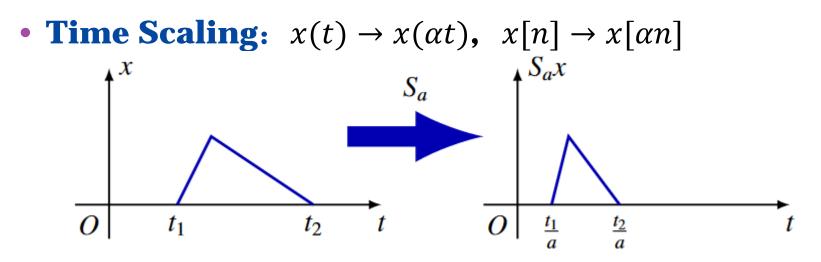
Time Reversal

• **CT signal:** $x(t) \rightarrow x(-t)$



- **DT signal:** $x[n] \rightarrow x[-n]$
- Example: tape recording played backward

Time Scaling



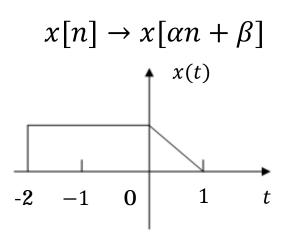
Example: audio played back at different speed

- fast forward $\alpha > 1$
- slow forward $0 < \alpha < 1$ Notes: $|\alpha| > 1$, Compres
- slow backward $-1 < \alpha < 0$
- fast backward $\alpha < -1$

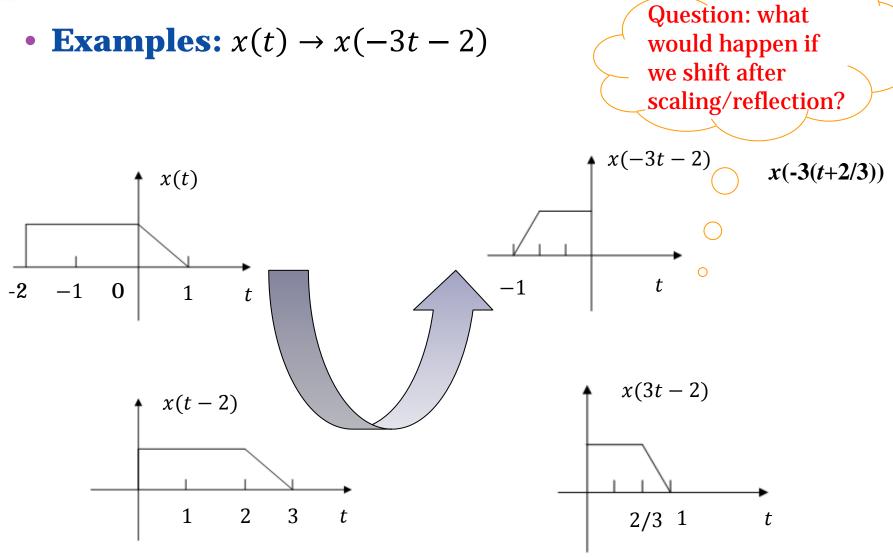
Notes: $|\alpha| > 1$, Compression $|\alpha| < 1$, Extension

General Affine Transformation

- Affine Transformation $x(t) \rightarrow x(\alpha t + \beta)$,
- **Examples:** $x(t) \rightarrow x(-3t-2)$



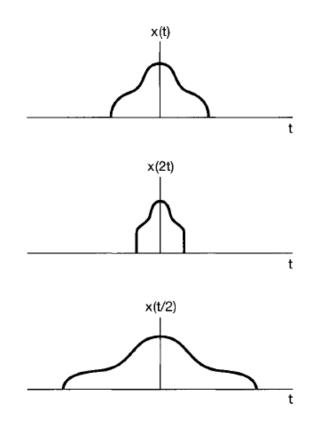
- Can be decomposed as product of time shift, reversal and scaling, with the general rule:
 - Time shift first
 - Then time reversal and time scaling

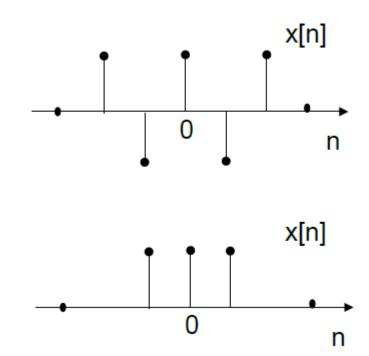


• Examples:

 $x(t) \rightarrow x(2t), x(\frac{t}{2})$

 $x[n] \rightarrow x[2n]$



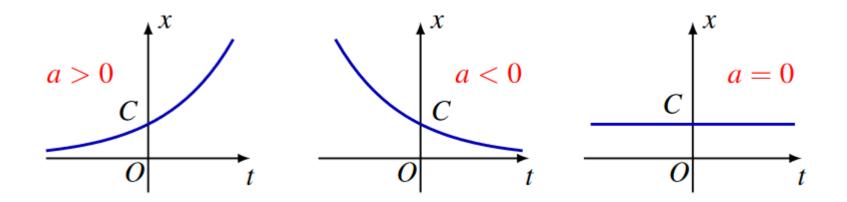


CT Complex Exponential Signals

 $x(t) = C \cdot e^{at}$, where $C \in \mathbb{C}$, $a \in \mathbb{C}$

• **Real exponential signals:** $C \in \mathbb{R}$, $a \in \mathbb{R}$

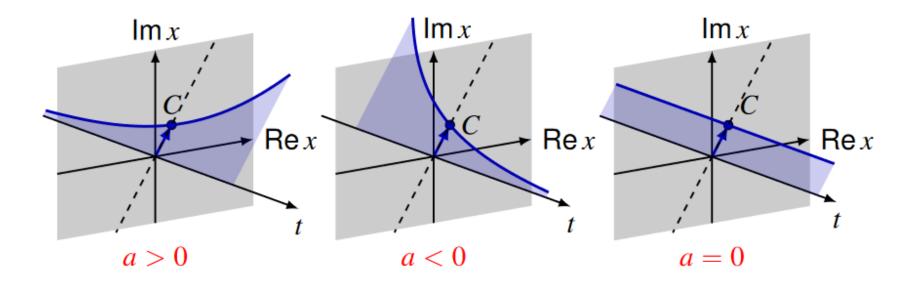
- a > 0: growing exponential
- □ *a* < 0: decaying exponential
- a = 0: constant



CT Complex Exponential Signals

 $x(t) = C \cdot e^{at}$, where $C \in \mathbb{C}$, $a \in \mathbb{R}$

a > 0: diverges from t axis, |x(t)| ≯∞ as t →∞
a < 0: converges to t axis, |x(t)| ↘∞ as t →∞
a = 0: constant

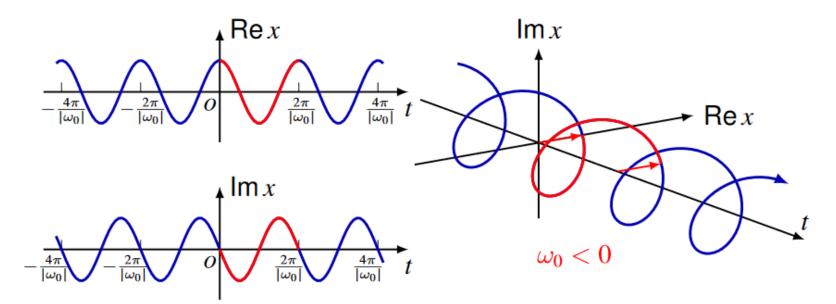


Periodic Complex Exponential Signals

- Euler's Relation: $x(t) = e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t), \text{ where } \omega_0 \in \mathbb{C}$ $x(t) = e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t), \text{ where } \omega_0 \in \mathbb{C}$ $x(t) = e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t), \text{ where } \omega_0 \in \mathbb{C}$ $x(t) = e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t), \text{ where } \omega_0 \in \mathbb{C}$ $x(t) = e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t), \text{ where } \omega_0 \in \mathbb{C}$
- (Angular) frequency: ω_0 radians/s
- Frequency: $f_0 = \omega_0/(2\pi)$ cycles/s (Hz)
- Fundamental period: $T_0 = 2\pi/|\omega_0| = 1/|f_0|$ s (only if $\omega_0 \neq 0$)

Periodic Complex Exponential Signals

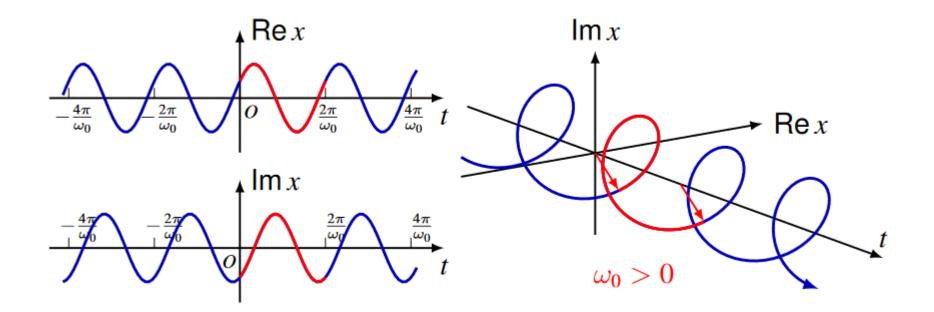
 $x(t) = e^{j\omega_0 t} = \cos(|\omega_0|t) - j\sin(|\omega_0|t)$, where $\omega_0 < 0$



• Fundamental frequency: $|\omega_0|$, $|f_0|$

Periodic Complex Exponential Signals

 $x(t) = Ce^{j\omega_0 t} = |C| [\cos(\omega_0 t + \phi) + j\sin(\omega_0 t + \phi)], C = Ce^{j\phi}$



CT Complex Sinusoidal Signals

 $x(t) = A \cos(\omega_0 t + \phi)$, where $A \in \mathbb{R}$

• **Conversion between exponentials and sinusoids** $Ae^{j(\omega_0 t + \phi)} = A\cos(\omega_0 t + \phi) + jA\sin(\omega_0 t + \phi)$

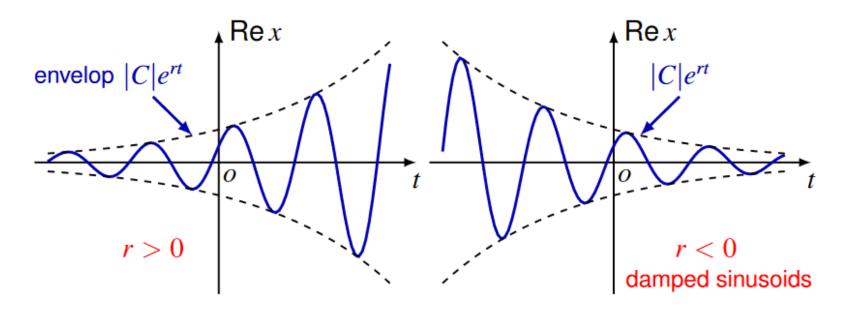
$$A\cos(\omega_0 t + \phi) = \frac{A}{2}e^{j\phi}e^{j\omega_0 t} + \frac{A}{2}e^{-j\phi}e^{-j\omega_0 t} = A \cdot \mathcal{R}e\{e^{j(\omega_0 t + \phi)}\}$$
$$A\sin(\omega_0 t + \phi) = A \cdot \mathcal{I}m\{e^{j(\omega_0 t + \phi)}\}$$

- Same periodicity
 - always periodic with fundamental frequency $|\omega_0|$
 - larger $|\omega_0|$, faster oscillation

General Complex Exponential Signals

$$x(t) = C \cdot e^{at}$$
, where $C = |C|e^{j\phi}$, $a = r + j\omega_0$
 \Downarrow

 $x(t) = |C|e^{rt}e^{j(\omega_0 t + \phi)} = |C|e^{rt}\cos(\omega_0 t + \phi) + j|C|e^{rt}\sin(\omega_0 t + \phi)$

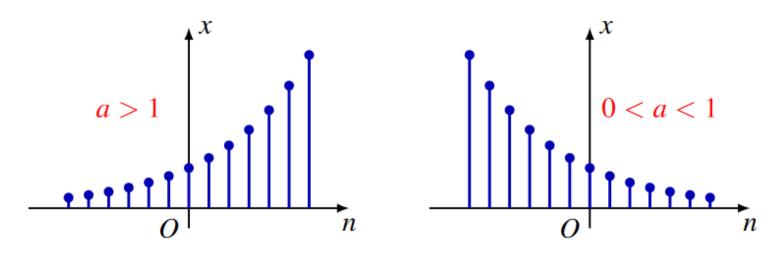


DT Complex Exponential Signals

 $x[n] = C \cdot \alpha^n = Ce^{\beta n}$, where $C \in \mathbb{C}$, $\alpha = e^{\beta} \in \mathbb{C}$

• **Real exponential signals:** $C \in \mathbb{R}$, $a \in \mathbb{R}$ (but $\beta \in \mathbb{C}$!)

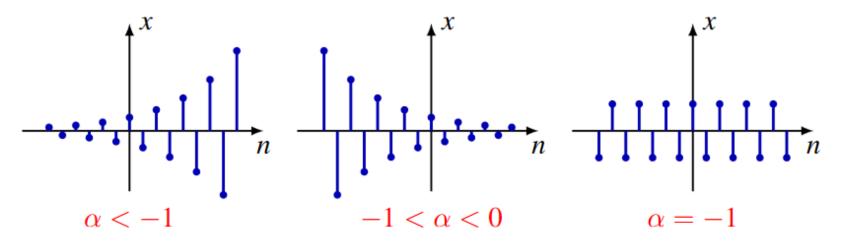
- **1**. α > 1: monotonically growing
- **2**. $0 < \alpha < 1$: monotonically decaying
- **3**. α = 0: constant



DT Complex Exponential Signals

 $x[n] = C \cdot \alpha^n = Ce^{\beta n}$, where $C \in \mathbb{C}$, $\alpha = e^{\beta} \in \mathbb{C}$

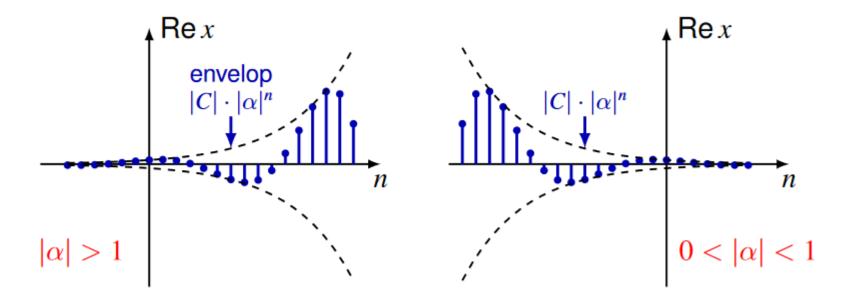
- Real exponential signals: C ∈ ℝ, a ∈ ℝ (but β ∈ ℂ!)
 4. α < −1: growing magnitude, alternating sign
 - 5. $-1 < \alpha < 0$: decaying magnitude, alternating sign
 - 6. $\alpha = -1$: constant magnitude, alternating sign ($\beta = j\pi$)



General Complex Exponential Signals

$$x[n] = C \cdot \alpha^n$$
, where $C = |C|e^{j\phi}$, $\alpha = |\alpha|e^{j\omega_0}$
 \Downarrow

 $x[n] = |C|\alpha^n e^{j(\omega_0 n + \phi)} = |C||\alpha|^n \cos(\omega_0 n + \phi) + j|C||\alpha|^n \sin(\omega_0 n + \phi)$



DT Complex Sinusoidal Signals

 $x[n] = |C|e^{j(\omega_0 n + \phi)} = |C|\cos(\omega_0 n + \phi) + j|C|\sin(\omega_0 n + \phi)$

- Periodicity
 - periodic $\Leftrightarrow \omega_0 = \frac{2\pi k}{N}$ for $k \in \mathbb{Z}$, $N \in \mathbb{Z}_+$
 - fundamental period $N_0 = N/gcd(N, k)$
- Fundamental frequency
 - zero if $N_0 = 1$
 - $2\pi/N_0$ if $N_0 > 1$
- Example: $x[n] = e^{j3\pi n}$ has $N_0 = 2$, fundamental frequency π , not 3π ! Note that $e^{j3\pi n} = e^{j\pi n}$.

DT Complex Exponential Signals

Aliasing

•
$$e^{j\omega_1 t} = e^{j\omega_2 t}, \forall t \in \mathbb{R} \iff \omega_1 = \omega_2$$

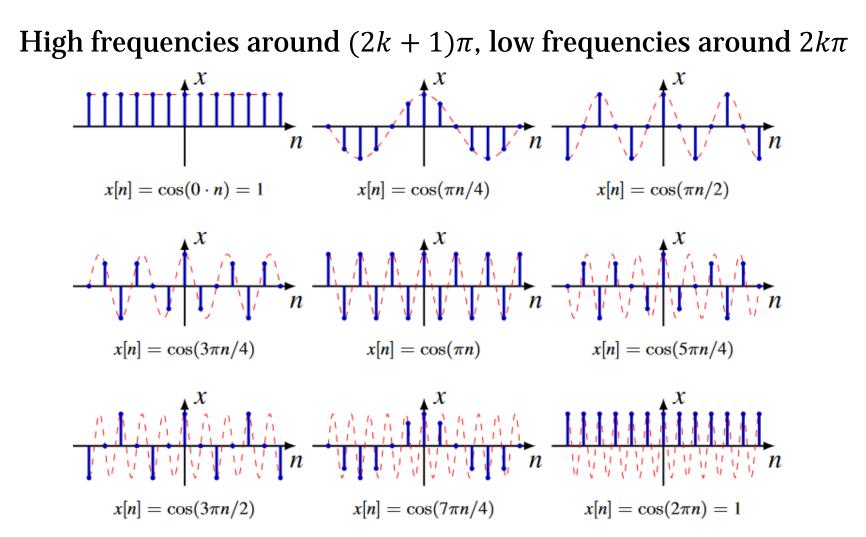
• $e^{j\omega_1n} = e^{j\omega_2n}, \forall n \in \mathbb{N} \iff \omega_1 = \omega_2 + 2k\pi, k \in \mathbb{Z}$

Frequencies differing by $2k\pi$ yields the same discrete sinusoid

• **Example:**
$$\omega_1 = 1, \omega_2 = 1 + 2\pi$$

For DT signals, it suffices to consider frequencies on an interval of length 2π , e.g., $[0, 2\pi)$ or $(-\pi, \pi]$

DT Complex Exponential Signals

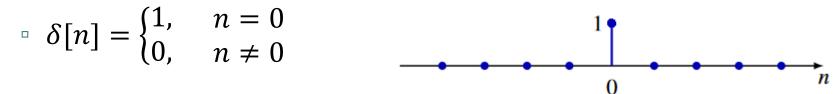


Comparison on Periodic Properties of CT and DT Complex Exponentials and Sinusoids

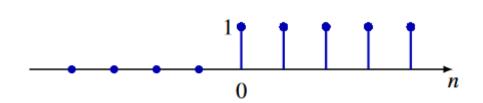
$x(t) = e^{j\omega_0 t}$	$x[n] = e^{j\omega_0 n}$
Distinct signals for distinct value of ω_0	Identical signals for values of ω_0 separated by multiples of 2π
Periodic for any choice of ω_0	Periodic only if $\omega_0 = 2\pi m/N$ for some integers $N > 0$ and m
Fundamental angular frequency ω_0	Fundamental angular frequency ω_0/n , if <i>m</i> and <i>N</i> do not have any factors in common
Fundamental period $2\pi/\omega_0$	Fundamental period $2\pi m/\omega_0$

DT Unit Impulse and Unit Step Sequences

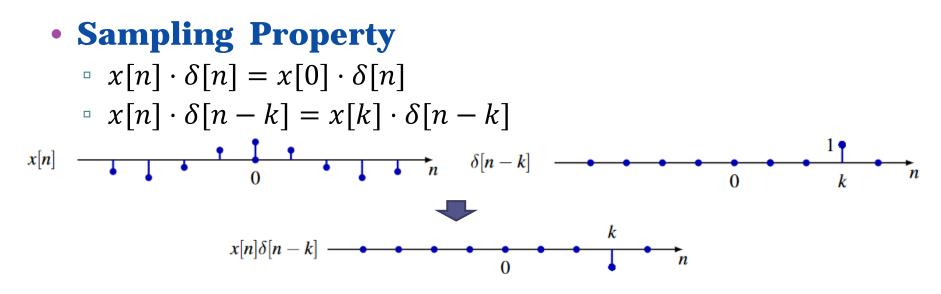
Unit Impulse Sequence



• Unit Step Sequence • $u[n] = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}$



- Relationship
 - δ[n] = u[n] − u[n − 1] first (backward) difference
 u[n] = ∑ⁿ_{m=-∞} δ[m] = ∑[∞]_{k=0} δ[n − k] running sum

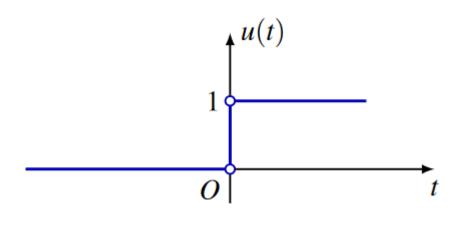


 Signal representation by means of a series of delayed unit samples
 x[n] - ∑[∞]

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k]$$

CT Unit Step Function

- Also called Heaviside (step) function $u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$
 - undefined at t = 0
 - sometimes u(0) = 0, 1, or 1/2



Oliver Heaviside (from Wikipedia)

Recall that for DT unit step/impulse signals

• Does it exist in CT domain a $\delta(t)$ satisfying the following relationship?

•
$$\delta(t) = \frac{du(t)}{dt}$$

• $u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$

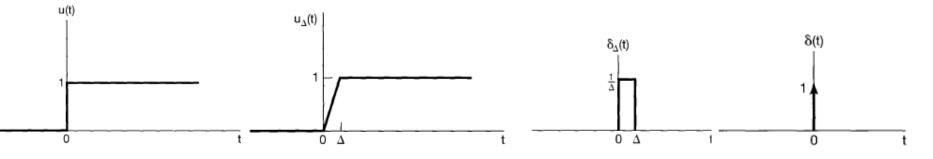
—1st derivative
—running sum

CT Unit Impulse Function

• **Define** $u_{\Delta}(t)$

• rises from 0 to 1 in a very short interval Δ

• Then
$$\delta_{\Delta}(t) = \frac{d(u_{\Delta}(t))}{dt}, \ \delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t)$$



Notes: the amplitude of the signal $\delta(t)$ at t = 0 is infinite, but with a unit integral from $-\infty$ to $+\infty$, i.e., from 0^- to 0^+ .

Also called Dirac delta function

$$\begin{cases} \int_{-\infty}^{\infty} \delta(t) dt = 1 \\ \delta(t) = 0, \quad t \neq 0 \end{cases}$$

Paul Dirac (from Wikipedia)

Physical models

- density of point mass/charge
- impulse force

Relationship

•
$$\delta(t) = \frac{du(t)}{dt}$$

• $u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$

Sampling Property x(t) · δ(t) = x(0) · δ(t) x(t) · δ(t - t₀) = x(t₀) · δ(t - t₀)

Scaling Property

$$\frac{d(ku(t))}{dt} = k\delta(t)$$

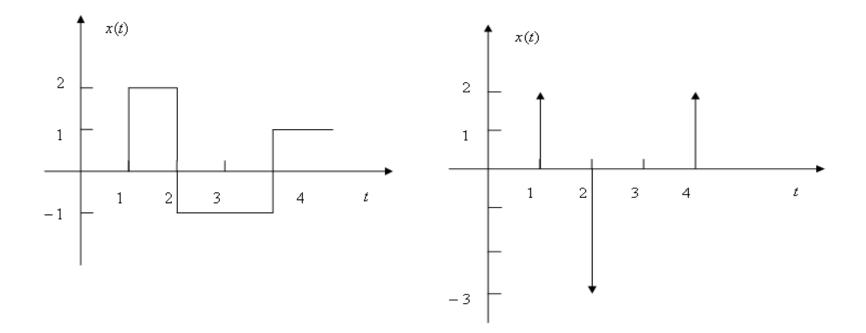
Question: can we represent x(t) by using a series of unit samples as that for DT signal?

• Example:

• Derive the 1st derivative of the following x(t)

• a)
$$x(t) = 2u(t-1) - 3u(t-2) + 2u(t-4)$$

• b) $\frac{dx(t)}{dt} = 2\delta(t-1) - 3\delta(t-2) + 2\delta(t-4)$



• Example:

Calculate the following signals/values

• a)
$$(t^2 - 1)\delta(t - 2)$$

• b)
$$\int_{-3}^{3} (t^2 - 1) \delta(t - 2) dt$$

• c)
$$x[n-3]\delta[n+1]$$

• d)
$$\int_{-3}^{t} (\tau^2 - 1) \delta(\tau - 2) d\tau$$

Systems

A system takes some input and produces some output

$$x(t) \longrightarrow \mathsf{CT} \text{ system} \longrightarrow y(t)$$
$$x[n] \longrightarrow \mathsf{DT} \text{ system} \longrightarrow y[n]$$

- **Example:** balance of your bank account
 - Input x[n]: net deposit on the *n*-th day
 - Output *y*[*n*]: balance at the end of the *n*-th day
 - Input-output relation:

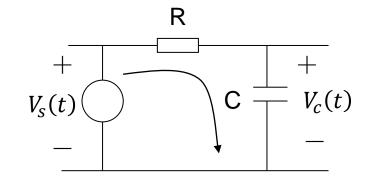
y[n] = (1+r)y[n-1] + x[n], r interest rate

System Modeling

RLC Circuit

$$:i(t) = \frac{V_S(t) - V_C(t)}{R} \quad i(t) = C \cdot \frac{dV_C(t)}{dt}$$

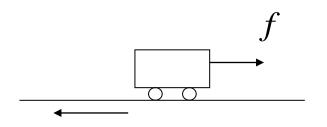
$$:. \frac{V_C}{dt} + \frac{1}{RC} V_C(t) = \frac{1}{RC} V_S(t)$$



• Mechanism System dv(t) = 1 + c(t)

$$\therefore \frac{dv(t)}{dt} = \frac{1}{m} [f(t) - \rho v(t)]$$

$$\therefore \frac{dv(t)}{dt} + \frac{\rho}{m} v(t) = \frac{f(t)}{m}$$



System Modeling

Observations

$$\frac{dy(t)}{dt} + ay(t) = bx(t)$$
$$ay[n-1] + y[n] = bx[n]$$

- Constant coefficient differential/difference equations
- Very different physical systems may
 - be modeled mathematically in very similar ways
 - have very similar mathematical descriptions

Typical Systems

• Amplifier

$$y(t) = cx(t)$$

• Adder

$$y(t) = x_1(t) + x_2(t)$$

• Multiplier

$$y(t) = x_1(t) \cdot x_2(t)$$

Differentiator/Difference

y(t) = dx(t)/dt, y[n] = x[n] - x[n-1]

Integrator/Accumulator

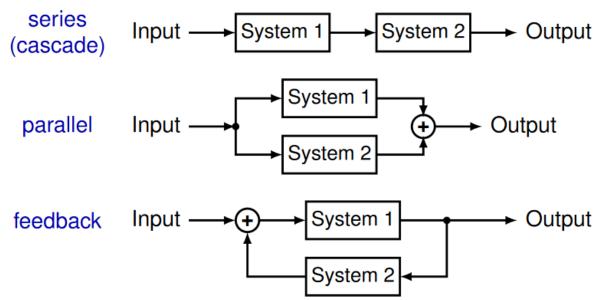
• • • • • •

System Interconnections

• Concept

- Build a complex system from interconnected subsystems
- Scope of subsystem depends on level of abstraction

Basic Types of Interconnections



Memory

Systems with memory

- if the current output of the system is dependent on future and/or past values of the inputs and/or outputs, e.g.,
- Capacitor system:

$$u(t) = \frac{1}{c} \int_{-\infty}^{t} i(\tau) \, d\tau, \ y(t) = \frac{1}{c} \int_{-\infty}^{t} x(\tau) \, d\tau$$

• Accumulator system:

$$y[n] = \sum_{k=-\infty}^{n} x[k], \ y[n] = \sum_{k=-\infty}^{n-1} x[k] + x[n] = y[n-1] + x[n]$$

Memoryless systems:

- if the current output of the system is dependent on the input at the same time, e.g.,
- Identity system:

$$y(t) = x(t), y[n] = x[n]$$

• Example:

- Determine the memory property of the following systems:
 - a) amplifier, adder, multiplier;
 - b) integrator, accumulator;
 - c) differentiator;
 - d) time reversal, time scalar;
 - e) decimator, interpolator.

Invertibility

Inverse systems

distinct inputs lead to distinct outputs, e.g.,

$$y(t) = 2x(t) \rightarrow w(t) = \frac{1}{2}y(t)$$

Non-inverse systems

• distinct inputs may lead to the same outputs, e.g., $y(t) = x^2(t), \quad y[n] = 0$

• Importance of the concept

encoding for channel coding or lossless compress

Causality

A system is causal

- if output at any time *t* depends only on input values up to *t*
- i.e., output does not anticipate future values of the input

• Notes:

- All real-time physical systems are causal
 - because time only moves forward, effect occurs after cause
 - e.g., imagine if you own a non-causal system whose output depends on tomorrow's stock price.
- Causality does not apply to spatially varying signals
 - one can move both left and right, up and down
- Causality does not apply to recorded signals
 - e.g., taped sports games vs. live show.

Causality

• For a causal system $x(t) \rightarrow y(t)$ $x_1(t) \rightarrow y_1(t), \quad x_2(t) \rightarrow y_2(t)$

if
$$x_1(t) = x_2(t), \forall t \le t_0$$

then
$$y_1(t) = y_2(t), \forall t \le t_0$$

 If two inputs to a causal system are identical up to some point in time t₀, the corresponding outputs are also equal up to the same time t₀

• Example:

Determine the causality of the following signals

•
$$y(t) = x^2(t-1)$$

• e.g., y(5) depends on x(4) ... causal

•
$$y[n] = \left(\frac{1}{2}\right)^{n+1} x^3[n-1]$$

• e.g., $y(5)$ depends on $x(4)$... causal

Linearity

- A system $x(t) \rightarrow y(t)$ is linear
 - if for any two input-output: $x_1(t) \rightarrow y_1(t)$, $x_2(t) \rightarrow y_2(t)$
 - the additivity and scaling properties hold $x_1(t) + x_2(t) \rightarrow y_1(t) + y_2(t)$ additivity: scaling: $ax_1(t) \rightarrow ay_1(t)$
 - or equivalently, the superposition property holds superposition: $ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t)$

• Example:

- $y[n] = x_2[n]$ nonlinear, causal
- y(t) = x(2t) linear, non-causal

Linearity

Many systems are nonlinear

 Examples: many circuit elements (e.g., diodes), dynamics of aircraft, econometric models, ...

• But why we study linear systems?

- Linear models represent accurate representations of behavior of many systems
 - e.g., linear resistors, capacitors, other examples given previously
- We can often linearize models to examine "small signal" perturbations around "operating points"
- Linear systems are analytically tractable, providing basis for important tools and considerable insight

Time-invariance

A system is time-invariant

- if its behavior does not depend on what time it is;
- i.e., time shift in input results in identical time shift in output

Mathematical definition

 For a DT system: A system x[n] → y[n] is time-invariant if for any input x[n] and any time shift n₀,

if $x[n] \rightarrow y[n]$ then $x[n-n_0] \rightarrow y[n-n_0]$

Similarly for a CT time-invariant system,

if $x(t) \rightarrow y(t)$ then $x(t-t_0) \rightarrow y(t-t_0)$

• Example:

 Consider the time-invariance property of the following systems:

•
$$y[n] = nx[n]$$
 time-varying

• $y(t) = x_2(t+1)$ time-invariant

• Example:

- For a time-invariant system $x(t) \rightarrow y(t)$,
 - if input is periodic with *T*, x(t) = x(t + T), then the output is also periodic with *T*, i.e., y(t) = y(t + T)

• Example:

• $y(t) = \cos(x(t))$

time-invariant

• Example

- amplitude modulator:
 - $y(t) = x(t)\cos\omega t$

time-varying

Stability

- A System is bounded-input bounded-output (BIBO) stable
 - if outputs are bounded for all bounded inputs

• Example:

- When $|x(t)| \le B$, determine whether or not the following systems are stable?
- a) $y(t) = t \cdot x(t)$, unstable
- **b**) $y(t) = e^{x(t)}$, stable

Linear Time-Invariant (LTI) Systems

- Using superposition and time-invariant properties
 - if response of an LTI system to some inputs ("basic signals") is known, we then actually know the response to many inputs

if
$$x_k[n] \rightarrow y_k[n]$$

then $\sum_k a_k x_k[n] \rightarrow \sum_k a_k y_k[n]$

- Characteristics of "basic signals"
 - can represent rich classes of signals as linear combinations of these building block signals
 - response of LTI Systems to these basic signals are both simple and insightful

Q & A

