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Signals

e Definition [The American Heritage Dictionary of the English Language]
a. Electronics An impulse or fluctuating quantity, as of electrical voltage or light

intensity, whose|variations|represent coded|information
b. Computers A sequence of digital values whose|variations|represent coded

information.

« Examples

= voltages or currents in circuits
= speech, images, videos

e Mathematical Representation

= Function of one or more independent variables
x: 1 - X

t - x(t)
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Examples of Signals
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Examples of Signals

e Speech signal
= x:R—> R
t - x(t)

e Color image
s P:IX]>RXGXB

(L.j) = (rli,jl gli, jl, b[ 71D
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e Continuous-time signal (Analog signal)
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e Discrete-time sighals sampled from continuous-
time signals

.....
® e

il 0. .
T T

x[n]
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e Digital signals from continuous-time signals
(Analog signal)

i
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e Digital signals from continuous-time signals
(Analog signal)

MicroSD card e ears

e rest combined... &
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 Independent variables can be
= continuous, e.g.,
- voltage/current
- vehicle speed
= discrete, e.g.,
- DNA base sequence
- weekly average for stock markets
= 1-D, 2-D, *e* n-D, e.qg.,
- 2-D/3-D Digital image pixels

10
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Classification of Signals

Deterministic signals vs. Random signals
« Continuous signals vs. Discrete signals
Energy signals vs. Power signals

Periodic signals vs. Non-periodic signals
Odd signals vs. Even signals

 Real signals vs. Complex signals

11
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Deterministic vs. Random Signals

e Deterministic signals

- can be described by exact

mathematical expression

= given t and get
deterministic result

x(t) Amplitude

(b

—_

« Random signals
= can not be described by
exact mathematic
expression
= given t and get random
result

¥2,¢) Amplitude

Time (s)
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Continuous-time vs. Discrete-time Signals

e Continuous-time (CT) signhals
= Independent variable ¢ is continuous

= The signal is defined for a continuum of values of the
Independent variable ¢

= Notation: parentheses for continuous time, e.g., (t)
F 3 X(t)

AN

example: x(t) = 2e~¢

&

A 4
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Continuous-time vs. Discrete-time Signals

e Discrete-time (DT) signals/Sequences: x[n]

= Independent variable n takes on only a discrete set of values,
(in this course, a set of integer values only)

= Signal is defined only at discrete times
= Notation: square brackets for discrete time, e.g., [n]

I x[n]
(2,n=-—1

4n= 0
2,n=1
\ 0, others [ [

example: x[n] = <
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Power and Energy Signals

e Power and energy in a physical system
- Instantaneous power

1
P(t) = v(®)i(®) = 5 |v(t) |2

= Total energy over time interval [tq, t;]

fttzp(t)dt = lftzlv(t) |2dt

tz_th tl

t, — 44

= Average power over time interval [tq, t,]
ty _ 1t 2
J2p(®dt = - [ *lv(p) |dt



S 16
YAXAAY

SHANGHAI JIAO TONG UNIVERSITY I

Power and Energy Signals

« Power and energy in this course
= Total Energy

_ (t2 2 _ n2 2
E = [ ZIx(0)]*dt, = o2, lx(n]l
= Average Power
_ 1 ) ) _ 1 no 2
P= 14 ftl |X(t) l dt’ b= n,—nq+1 Zn:nllx[n]|
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Power and Energy Signals

« Power and energy definitions over infinite interval
= Total Energy

Ew=lim [[ |x(t)?dt  Eo, = lim S ylx[n]|?

= Average Power

_i . T 2 . 1 N 2
P°°_2TTh_>oof—T|x(t)| dt Fe 1\1/1—r>r0102N+1 n=—nlx[n]|
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Finite-energy and Finite-power Signals

4 x(t)
= Finite-Energy Signal

E,6 < P, =0 example

= Finite-Average Power Signal

P, < E, = example:  x[n]=4
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Periodic vs. Non-periodic Signals

e Definition for continuous-time signals
> If x(t) = x(t + T) for all values of t, then x(t) is periodic,
and x(t) = x(t + mT) for all t and any integer m.

= Fundamental period £ the smallest positive value that
satisfies x(t) = x(t + T) forall t

Question: iIf the signal iIs constant, what is
the fundamental period ?

19



e 20
YAXAAY

SHANGHAI JIAO TONG UNIVERSITY I

Periodic vs. Non-periodic Signals

e Definition for discrete-time signals
= If x[n]=x[n+N] for all values of n, then x[n] is periodic, and
x[n]=x[n+mN] for all n and any integer m

= Fundamental Period £ the smallest positive integer
that satisfies x[n]=x[n+N] for all n

Question: if the signal is constant, what is
the fundamental period ?
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Even vs. Odd Signals

e Definition
= x(t) or x[n] is even if it is identical to its time-reversed
counterpart

x(t) = x(=t) x[n] = x[-n]

= Similarly, x(t) or x[n] is odd if

x(t) = —x(—t) x|n] = —x|—n]

Question: for odd signal x(t), can we determine x(0)?
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Even vs. Odd Signals

« Even-odd decomposition of a signal

x(t) = Ep{x(t)} + Oq{x(t)}

/ \

Even part Odd part

1
Ey{x(t)} = [X(t) +x(=t)] Oqx(0)} = 5 [x(t) —x(=1)]
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Time Shift
x(t) » x(t —b) x[n] = x[n — b]

/N

O|h I [ O| H+b i+ b t

e Examples: radar, sonar, radio propagations

 Notes: each point in x(t)/x[n] occurs at a later/early time in
x(t —t,)/x[n —ny], when t,/n, iIs positive/negative, i.e.,
o x(t —t,)/x[n — ngy] is the delayed version of x(t)/x[n], for t,/n, > 0
* x(t —t,)/x[n — ngy] Is the advanced version of x(t)/x[n], for t,/n, <0
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Time Reversal

« CT signal: x(t) = x(—t)

DT signal: x|[n] — x[—n]

« Example: tape recording played backward
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Time Scaling

 Time Scaling: x(t) - x(at), x[n] - x[an]

WX A 9.X
Sa ¢
/\ R /\ g
O 8] 5) ! 0| 1 5] I3
d i

« Example: audio played back at different speed
= fast forward a>1
= slow forward O0<a<1l pNotes: |a]> 1, Compression
= Slow backward -1 <a <0 la| < 1, Extension
= fast backward a < -1
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General Affine Transformation

o Affine Transformation
x(t) = x(at + ), x[n] = x[an + (]
x(t)

.
"

« Examples:
x(t) = x(—=3t—2) | .
-2 -1 O 1 t

e Can be decomposed as product of time shift, reversal and
scaling, with the general rule:
= Time shift first
= Then time reversal and time scaling
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Question: what
would happen if
we shift after
scaling/reflection?

« Examples: x(t) - x(—3t — 2)

(D) PEEETD - xaears)
/ ®
| LI S
2 -1 0 1 —1 t
x(t — 2) + x(3t—2)




« Examples:

x(t) - x(2t), x(2)
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®(t}

x(21)

2

x(v2)

-

A

28
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CT Complex Exponential Signals

x(t) =C-e* , whereC e C,a€eC

 Real exponential signals: CeR,a e R
= a > 0: growing exponential
= a < 0: decaying exponential
= a = 0: constant

A Y A X AL
a > (0 / \ a <0 a=>0
C C C
_/ . \; .
0 t 0, 1 O {
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CT Complex Exponential Signals
x(t) =C-e*, whereCeC,a€eR
= a > 0: diverges from t axis, |x(t)| 270 ast — oo

= a < 0:converges to t axis, |x(t)| Yo ast - o
= a = 0: constant

Im x
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Periodic Complex Exponential Signals

= Euler’s Relation:
x(t) = e/®ot=cos(wy t) + jsin( wy t), where w, € C
s Rex Im x

\ AN \NVANYAR
AVALAVLRVAAVAY

Im x
1/\/\
av; \4\/ 0> 0

= (Angular) frequency: w, radians/s
= Frequency: f, = wq/(2m) cycles/s (Hz)
= Fundamental period: Ty = 2n/|wg| = 1/|fo| S (only if wy # 0)
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Periodic Complex Exponential Signals

x(t) = e/@ot=cos( |wg|t) — j sin(|wg| t), Where wy < 0

L Rex Im x
ANYANY/ \NVANYAR
T \S T\ ¢ ool \J Tl ! Rex
1|mx
WA\ ANVAW o <0 I
~TwoNS Tl 0 Twol Two] 1 |

- Fundamental frequency: |wg|, |fol
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Periodic Complex Exponential Signals

x(t) = Cel@ot=|(l[cos(wy t + ¢) + jsin(wy t + )], C = Cel®
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CT Complex Sinusoidal Signals
x(t) =Acos(wot+ @), whered € R

= Conversion between exponentials and sinusoids
Ael(@ot+P) = A cos(wyt + @)+ jAsin (wy t + @)

A ., . A . . .
Acos(wyt + ¢) = Eef‘l’ef“’ot + Ee‘ﬂl’e—lwot = A - Re{el(@ot+d)

Asin (wgt + @) = A - Imfel (@ot+PN

= Same periodicity
- always periodic with fundamental frequency |w,|
- larger |w,|, faster oscillation
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General Complex Exponential Signals

x(t) =C-e% whereC =|Cle’®, a=7r + jwg
U

x(t) = |CleTtel(@ot*P) = | le™ cos(wy t + @) + j|C|e™ sin(wy t + ¢)

s Rex ) . s Rex
envelop |C|e™ ’,!,/ . |Cle™
<N\ ‘[\ . [\ I\ " N---

damped sinusoids



e 36
YAXAAY

SHANGHAI JIAO TONG UNIVERSITY I

DT Complex Exponential Signals
x[n]=C-a™ =CeP", whereCeEC,a =ePf eC

 Real exponential signals:C e R,ae R (butf eC!)
= 1. a > 1: monotonically growing
= 2.0 < a < 1: monotonically decaying
= 3. a = 0: constant
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DT Complex Exponential Signals
x[n]=C-a™ =CeP", whereCeEC,a =ePf eC

 Real exponential signals: C e R,a e R (butf € C!)
= 4. a < —1: growing magnitude, alternating sign
= 5. —1 < a < 0: decaying magnitude, alternating sign
= 6. a = —1: constant magnitude, alternating sign (f = jm )

A X AN A X

[11.. AEEEREEN
z 1111“*'*:-1 [TTTTTTT

o < —1 —l<a<0 o= —1
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General Complex Exponential Signals

x[n] = C - a™, where C = |C|e/®, a = |a|e/®o
U

x|n] = ICIa"ej(“’O”+¢) = |C]|a|"cos(wyn + @) + j|C||a|™ sin(wy n + ¢P)

s Rex L Rex
envelop
cl- |ar|ﬂ H H |C| |a|”
e "" 'I l ] e
22310 sne

n

\‘

| > 1 2 0<|af <1
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DT Complex Sinusoidal Signals
x[n] = |Cle/@on+P) = |C| cos(won + @) + j|C| sin( wy n + ¢)

= Periodicity
- periodic © wq = 2Tﬂkfor keZ N €L,
- fundamental period Ny = N/gcd(N, k)

= Fundamental frequency
- zeroif Ny =1
- 2m/Ny if Ny > 1

= Example: x[n] = ¢/3™ has N, = 2, fundamental frequency =,
not 37! Note that /3™ = /™",
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DT Complex Exponential Signals

e Aliasing
o g0t = pJ2t Yyt e R © wy = w,

o @l = pJW2 yn e N © w, = w, + 2km, k €7
Frequencies differing by 2kn yields the same discrete sinusoid

e Example: w;, =1, w, =14+ 2n
A X

For DT signals, it suffices to consider frequencies on an
Interval of length 2, e.qg., [0, 2m) or (—m, 7]




41

Y FXAAY

SHANGHAI JIAO TONG UNIVERSITY I

DT Complex Exponential Signals

High frequencies around (2k + 1), low frequencies around 2km
X X

e
B

H
x[n] = cos(0-n) = 1 x[n] = cos(nn/4) x[n] = cos(wn/2)
X X X
Ao I [ ] - B
IR
x[n] = cos(3mn/4) x[n] = cos(mn) x[n] = cos(57n/4)
X ar X

x[n] = cos(37n/2) x[n] = cos(Twn/4) x[n] = cos(2mwn) = 1
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Comparison on Periodic Properties of CT and DT
Complex Exponentials and Sinusoids

x(t) = e/@ot

Distinct signals for distinct value
of w

Periodic for any choice of w,

Fundamental angular frequency
Wo

Fundamental period 27 /w,

x[n] = eJ@om

Identical signals for values of w,
separated by multiples of 27

Periodic only if wy = 2mm/N
for some integers N > 0 and m

Fundamental angular frequency
wo/n, If m and N do not have
any factors in common

Fundamental period 2mm/w,
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DT Unit Impulse and Unit Step Sequences

 Unit Impulse Sequence

1, n=0
D 6[n]={0’ n+0 . » II . * . * >

e Unit Step Sequence
0, n<O0

um={ 53 1111
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 Relationship
> §[n] = u[n] —u[n — 1] first (backward) difference
o u[n] = Y ho_wd[m] = Yo 8[n — k] running sum

« Sampling Property
= x[n] - §[n] = x[0] - 6[n]
- x[n] - 8[n — k] = x[k] - 8[n — k]

44

x|n] T ] 3 ! I ! S dn—k] —e—e—o—o—o—o lT

x[nw[n — k] - o o o o o l .

e Signal representation by means of a series of
delayed unit samples
> x[n] = Xpz_wx[k] - 8[n — K]
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CT Unit Step Function

* Also called Heaviside (step) function

0, t<0
u(t)z{l t>0

> undefinedatt =0
- sometimes u(0) =0,1,0r 1/2

L u(t) Oliver Heaviside
(from Wikipedia)

10

o] t
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 Recall that for DT unit step/impulse signals

> §[n] = u[n] —u[n — 1] —1st difference
s un] =Yh__8[m] = Y=o d[n — k] —running sum

e Does it exist in CT domain a 6(t) satisfying the
following relationship?

du(t
SO0 =T

o u(t) = f_too5(r)dr —running sum?
®

—1st derivative
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CT Unit Impulse Function

e Define u,(t)
= rises from 0 to 1 in a very short interval A

o Then 8,(t) = 240 504y = lim 65 (£)

dt
U ut)
8,0 ait)
| | lh 1‘
_ | _
0 t D A t 0 A 1 0

Notes: the amplitude of the signal §(t) at t = 0 is infinite, but
with a unit integral from —o to +oo , i.e., from 0~ to 0.
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 Also called Dirac delta function
j s(t)dt = 1
5()=0, t+0

t S(t)

A

e Physical models
= density of point mass/charge
= impulse force

48

Paul Dirac
(from Wikipedia)
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 Relationship

5(t) _ duit)

= u(t) = f_oo 5(7)dr

« Sampling Property
= x(t) - 6(t) = x(0) - 6(t)
> x(t) - 6(t —ty) = x(ty) - 6(t — tp)

e Scaling Property

] d(ku(t))
=20 = k8 ()

Question: can we represent x(t) by using a series of
unit samples as that for DT signal?

49
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« Example:
= Derive the 15t derivative of the following x(t)
ca)x(t) =2u(t—1) —3u(t —2) + 2u(t — 4)

cb) B2 =26(t—1) - 36(t —2) +28(t — 4)

X (ﬁ) "y ()

i I i

¥
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« Example:
= Calculate the following signals/values

© a) (t2 — 1)8(t — 2)
cb) [7,(t% - 18t - 2) dt
° ¢) x|n — 3]6[n + 1]
- d) f_tg(rz —1)8(t—2)dr

o1
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Systems

* A system takes some input and produces some output
x(t) ——| CT system > y(1)
x[n] —{ DT system > y[n]

« Example: balance of your bank account
= Input x[n]: net deposit on the n-th day
= Qutput y[n]: balance at the end of the n-th day
= Input-output relation:
y[n] = (1 +r)y[n—1] +x[n], rinterestrate
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System Modeling

« RLC Circuit R
Vs(£)=Ve(t) . dv,(t) + — 4
. 1(t) = i(t) =C- 1
© R W at () C T V@®
VL V() = — VL (b)
var Tre/cWt) S Re s — -
. I\/Iechanism System f
ood t
D [f(t) pu()] -
Q O
. dv(t) (t) — @ —

dt m
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System Modeling

e Observations

dy(t) B
T + ay(t) = bx(t)

ay[n — 1] + y[n] = bx[n]

= Constant coefficient differential/difference equations
= Very different physical systems may

- be modeled mathematically in very similar ways

- have very similar mathematical descriptions

o4
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Typical Systems

Amplifier
y(t) = cx(t)
Adder
y(t) = x1(t) + x2(t)
Multiplier

y(t) = x1(1) - x2(2)
Differentiator/Difference

y(t) = dx(t)/dt, y[n] = x[n] = x[n — 1]
Integrator/Accumulator

95
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System Interconnections

 Concept

= Build a complex system from interconnected subsystems
= Scope of subsystem depends on level of abstraction

e Basic Types of Interconnections

series

Input — System 1 —{System 2 }—— Qutput

(cascade)
—| System 1
parallel Input —»¢
— System 2

} Output

System 1

feedback Input >(+f >

System 2

] » Qutput
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Memory

e Systems with memory
= 1f the current output of the system is dependent on future and/or
past values of the inputs and/or outputs, e.g.,

= Capacitor system:
u(t) == [ i@dr, y(©) =2 [ x()dr
= Accumulator system:
— n

ylnl = ¥ o x[k], ylnl= ¥ '_"x[k]+x[n] = y[n — 1] + x[n]

e Memoryless systems:
= 1f the current output of the system is dependent on the input at
the same time, e.g.,
= ldentity system:
y(t) = x(t),y[n] = x[n]
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« Example:
= Determine the memory property of the following systems:
a) amplifier, adder, multiplier;
b) integrator, accumulator;
c) differentiator;
d) time reversal, time scalar;
e) decimator, interpolator.
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Invertibility

* Inverse systems
= distinct inputs lead to distinct outputs, e.g.,

1
y(£) = 2x(6) = () = 5¥(0

e Non-inverse systems
= distinct inputs may lead to the same outputs, e.g.,

y(t) =x%(t), y[n]=0

 Importance of the concept
= encoding for channel coding or lossless compress
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Causality

e A system is causal
= 1f output at any time t depends only on input valuesup to t
= 1.e., output does not anticipate future values of the input

* Notes:
= All real-time physical systems are causal
- because time only moves forward, effect occurs after cause

- e.g., Imagine if you own a non-causal system whose output
depends on tomorrow’s stock price.

= Causality does not apply to spatially varying signals
- one can move both left and right, up and down

= Causality does not apply to recorded signals
- e.g., taped sports games vs. live show.
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Causality

 For a causal system x(t) - y(t)
x1(t) = y1(8),  x2(t) — y2(t)

If x1(t) = x,(t), Vt< ¢t
then y1(t) = y2(8), Vt< t,

= |If two inputs to a causal system are identical up to some
point in time t,, the corresponding outputs are also equal
up to the same time ¢,

61
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« Example:
= Determine the causality of the following signals
cy() =x*(t-1)
* e.g., y(5) depends on x(4) ...causal

“y() =x(t+1)
* e.g., y(5) = x(6) depends on future ... noncausal

» y[n] = x[-n]
- e.g., y(5) = x(-5), but y[-5] = x[5] depends on
future ... noncausal

oyl = (2" -1

- e.g., y(5) depends on x(4) ... causal

62
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Linearity

« Asystem x(t) — y(t)is linear
= If for any two input-output: x,(t) = y,(t) , x,(t) = y,(t)
= the additivity and scaling properties hold
additivity: x.(t) + x,(t) = y(t) + y,(t)
scaling: ax,(t) = ay,(t)
 or equivalently, the superposition property holds
superposition: ax,(t) + bx, (t) =» ay,(t) + by, (t)

 Example:
* y[n] = x,[n] nonlinear, causal

* y(t) = x(2t) linear, non-causal
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Linearity

« Many systems are nonlinear

= Examples: many circuit elements (e.g., diodes), dynamics of
alrcraft, econometric models, ...

 But why we study linear systems?

= Linear models represent accurate representations of
behavior of many systems

- e.g., linear resistors, capacitors, other examples given
previously

= We can often linearize models to examine “small signal”
perturbations around “operating points”

= Linear systems are analytically tractable, providing basis
for important tools and considerable insight
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Time-invariance

A system is time-invariant
= 1f its behavior does not depend on what time it is;
= 1.e., time shift in input results in identical time shift in output

« Mathematical definition
= For a DT system: A system x[n] — y[n] is time-invariant if
for any input x[n] and any time shift n,,

If x[n] — y[n]
then x[n —ng| = y[n —ny]
= Similarly for a CT time-invariant system,
If x(t) = y(t)

then x(t - to) - y(t-tp)
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« Example:
= Consider the time-invariance property of the following
systems:

* y[n] = nx[n] time-varying

cy(t) =x,(t+ 1) time-invariant
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« Example:
= For a time-invariant system x(t) — y(t),
- If input is periodicwith T, x(t) = x(t + T), then the
output is also periodic with T, I.e.,
y@) =y +T)

« Example:
* y(t) = cos(x(t)) time-invariant

« Example
= amplitude modulator:
* y(t) = x(t)coswt time-varying
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Stability

e A System is bounded-input bounded-output
(BIBO) stable

= 1f outputs are bounded for all bounded inputs

« Example:

= When |x(t)| < B, determine whether or not the following
systems are stable?

= a)y(t) =t x(t), unstable
s b) y(t) = e*®) stable
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Linear Time-Invariant (LTIl) Systems

e Using superposition and time-invariant properties
= 1f response of an LTI system to some inputs (“basic signals”)
IS known, we then actually know the response to many inputs
- if xgln] = yi [n]
then Yk Ak X [n] = Xg agyr[n]

e Characteristics of “basic signals”

= can represent rich classes of signals as linear combinations of
these building block signals

= response of LTI Systems to these basic signals are both simple
and insightful
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